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Preface

AI 2001 is the 14th in the series of Artificial Intelligence conferences sponsored
by the Canadian Society for Computational Studies of Intelligence/Société ca-
nadienne pour l’étude de l’intelligence par ordinateur. As was the case last year
too, the conference is being held in conjunction with the annual conferences
of two other Canadian societies, Graphics Interface (GI 2001) and Vision Inter-
face (VI 2001). We believe that the overall experience will be enriched by this
conjunction of conferences.

This year is the “silver anniversary” of the conference: the first Canadian
AI conference was held in 1976 at UBC. During its lifetime, it has attracted
Canadian and international papers of high quality from a variety of AI research
areas. All papers submitted to the conference received at least three indepen-
dent reviews. Approximately one third were accepted for plenary presentation
at the conference. The best paper of the conference will be invited to appear in
Computational Intelligence.

This year, we have some innovations in the format of the conference. In addi-
tion to the plenary presentations of the 24 accepted papers, organized in topical
sessions, we have a session devoted to short presentations of the accepted po-
sters, and a graduate symposium session. With this format, we hope to increase
the level of interaction and to make the experience even more interesting and en-
joyable to all the participants. The graduate symposium is sponsored by AAAI,
who provided funds to partially cover the expenses of the participating students.

Many people contributed to the success of this conference. The members
of the program committee coordinated the refereeing of all submitted papers.
They also made several recommendations that contributed to other aspects of
the program. The referees provided reviews of the submitted technical papers;
their efforts were irreplaceable in ensuring the quality of the accepted papers.
Our thanks also go to Howard Hamilton and Bob Mercer for their invaluable
help in organizing the conference. We also acknowledge the help we received
from Alfred Hofmann and others at Springer-Verlag.

Lastly, we are pleased to thank all participants. You are the ones who make
all this effort worthwhile!

June 2001 Eleni Stroulia, Stan Matwin
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A Case Study for Learning from Imbalanced
Data Sets

Aijun An, Nick Cercone, and Xiangji Huang

Department of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1 Canada

{aan, ncercone, jhuang}@uwaterloo.ca

Abstract. We present our experience in applying a rule induction
technique to an extremely imbalanced pharmaceutical data set. We
focus on using a variety of performance measures to evaluate a number
of rule quality measures. We also investigate whether simply changing
the distribution skew in the training data can improve predictive
performance. Finally, we propose a method for adjusting the learning
algorithm for learning in an extremely imbalanced environment. Our
experimental results show that this adjustment improves predictive
performance for rule quality formulas in which rule coverage makes
positive contributions to the rule quality value.

Keywords: Machine learning, Imbalanced data sets, Rule quality.

1 Introduction

Many real-world data sets exhibit skewed class distributions in which almost all
cases are allotted to one or more larger classes and far fewer cases allotted for
a smaller, usually more interesting class. For example, a medical diagnosis data
set used in [1] contains cases that correspond to diagnoses for a rare disease. In
that data set, only 5% of the cases correspond to “positive” diagnoses; the re-
maining majority of the cases belong to the “no disease” category. Learning with
this kind of imbalanced data set presents problems to machine learning systems,
problems which are not revealed when the systems work on relatively balanced
data sets. One problem occurs since most inductive learning algorithms assume
that maximizing accuracy on a full range of cases is the goal [12] and, there-
fore, these systems exhibit accurate prediction for the majority class cases, but
very poor performance for cases associated with the low frequency class. Some
solutions to this problem have been suggested. For example, Cardie and Howe
[5] proposed a method that uses case-specific feature weights in a case-based
learning framework to improve minority class prediction. Some studies focus on
reducing the imbalance in the data set by using different sampling techniques,
such as data reduction techniques that remove only majority class examples [9]
and “up-sampling” techniques that duplicate the training examples of the minor-
ity class or create new examples by corrupting existing ones with artificial noise

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 1–15, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 A. An, N. Cercone, and X. Huang

[6]. An alternative to balancing the classes is to develop a learning algorithm
that is intrinsically insensitive to class distribution in the training set [11]. An
example of this kind of algorithm is the SHRINK algorithm [10] that finds only
rules that best summarizes the positive examples (of the small class), but makes
use of the information from the negative examples. Another approach to learning
from imbalanced data sets, proposed by Provost and Fawcett [13], is to build a
hybrid classifier that uses ROC analysis for comparison of classifier performance
that is robust to imprecise class distributions and misclassification costs. Provost
and Fawcett argued that optimal performance for continuous-output classifiers
in terms of expected cost can be obtained by adjusting the output threshold
according to the class distributions and misclassification costs. Although many
methods for coping with imbalanced data sets have been proposed, there remain
open questions. According to [12], one open question is whether simply chang-
ing the distribution skew can improve predictive performance systematically.
Another question is whether we can tailor the learning algorithm to this special
learning environment so that the accuracy for the extreme class values can be
improved.

Another important issue in learning from imbalanced data sets is how to
evaluate the learning result. Clearly, the standard performance measure used in
machine learning - predictive accuracy over the entire region of the test cases is
not appropriate for applications where classes are unequally distributed. Several
measures have been proposed. Kubat et al [11] proposed to use the geometric
mean of the accuracy on the positive examples and the accuracy on the negative
examples as one of their performance measures. Provost and Fawcette [13] made
use of ROC curves that visualize the trade-off between the false positive rate
and the true positive rate to compare classifiers. In information retrieval, where
relevant and irrelevant documents are extremely imbalanced, recall and precision
are used as standard performance measures.

We present our experience in applying rule induction techniques to an ex-
tremely imbalanced data set. The task of this application is to identify promising
compounds from a large chemical inventory for drug discovery. The data set con-
tains nearly 30, 000 cases, only 2% of which are labeled as potent molecules. To
learn decision rules from this data set, we applied the ELEM2 rule induction
system [2]. The learning strategies used in ELEM2 include sequential cover-
ing and post-pruning. A number of rule quality formulas are incorporated in
ELEM2 for use in the post-pruning and classification processes. Different rule
quality formulas may lead to generation of different sets of rules, which in turn
results in different predictions for the new cases. We have previously evaluated
the rule quality formulas on a number of benchmark datasets [3], but none of
them is extremely imbalanced. Our objective in this paper is to provide answers
to the following questions. First, we would like to determine how each of these
rule quality formulas reacts to the extremely imbalanced class distribution and
which of the rule quality formulas is most appropriate in this kind of environ-
ment. Second, we would like to know whether reducing the imbalance in the
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data set can improve predictive performance. Third, we would like to compare
different measures of performance to discover whether there is correlation be-
tween them. Finally, we would like to know whether a special adjustment of the
learning algorithm can improve predictive performance in an extremely imbal-
anced environment. The paper is organized as follows. In Section 2, we describe
our data set and the application tasks related to the data set. We then briefly
describe the learning and classification algorithms used in our experiment. In
Section 6 we present our experiments and experimental results. We conclude the
paper with a summary of our findings from the experiments.

2 Domain of the Case Study

The data set we used was obtained from the National Cancer Institute through
our colleagues in the Statistics Department at the University of Waterloo. It con-
cerns the prediction of biological potency of chemical compounds for possible use
in the pharmaceutical industry. Highly potent compounds have great potential
to be used in new medical drugs. In the pharmaceutical industry, screening ev-
ery available compound against every biological target through biological tests
is impossible due to the expense and work involved. Therefore, it is highly desir-
able to develop methods that, on the basis of relatively few tested compounds,
can identify promising compounds from a relatively large chemical inventory.

2.1 The Data Set

Our data set contains 29, 812 tested compounds. Each compound is described
by a set of descriptors that characterize the chemical structure of the molecule
and a binary response variable that indicates whether the compound is active
or not. 2.04% of these compounds are labeled as active and the remaining ones
as inactive. The data set has been randomly split into two equal-sized subsets,
each of which contains the same number of active compounds so that the class
distribution in either of the subsets remain the same as in the original data set.
We use one subset as the training set and the other as the testing test in our
experiments.

2.2 Tasks and Performance Measures

One obvious task is to learn classification rules from the training data set and
use these rules to classify the compounds in the test set. Since it is the active
compounds that are of interest, appropriate measures of classification perfor-
mance are not the accuracy on the entire test set, but the precision and recall
on the active compounds. Precision is the proportion of true active compounds
among the compounds predicted as active. Recall is proportion of the predicted
active compounds among the active compounds in the test set.
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However, simply classifying compounds is not sufficient. The domain experts
would like identified compounds to be presented to them in decreasing order of a
prediction score with the highest prediction indicating the most probably active
compound so that identified compounds can be tested in biological systems one
by one starting with the compound with the highest prediction. Therefore, in
addition to classification, the other task is to rank the compounds in the test set
according to a prediction score. To be cost effective, it is preferred that a high
proportion of the proposed lead compounds actually exhibit biological activity.

3 The Learning Algorithm

ELEM2 [2] is used to learn rules from the above bio-chemistry data set. Given
a set of training data, ELEM2 learns a set of rules for each of the classes in the
data set. For a class C, ELEM2 generates a disjunctive set of conjunctive rules
by the sequential covering learning strategy, which sequentially learns a single
conjunctive rule, removes the examples covered by the rule, then iterates the
process until all examples of class C is covered or until no rule can be generated.
The learning of a single conjunctive rule begins by considering the most general
rule precondition, then greedily searching for an attribute-value pair that is most
relevant to class C according to the following attribute-value pair evaluation
function: SIGC(av) = P (av)(P (C|av) − P (C)), where av is an attribute-value
pair and P denotes probability. The selected attribute-value pair is then added to
the rule precondition as a conjunct. The process is repeated by greedily adding a
second attribute-value pair, and so on, until the hypothesis reaches an acceptable
level of performance. In ELEM2, the acceptable level is based on the consistency
of the rule: it forms a rule that is as consistent with the training data as possible.
Since this “consistent” rule may overfit the data, ELEM2 then “post-prunes” the
rule after the initial search for this rule is complete.

To post-prune a rule, ELEM2 computes a rule quality value according to
one of the 11 statistical or empirical formulas. The formulas include a weighted
sum of rule consistency and coverage (WS), a product of rule consistency and
coverage (Prod), the χ2 statistic (Chi), the G2 likelihood ratio statistic (G2),
a measure of rule logical sufficiency (LS), a measure of discrimination between
positive and negative examples (MD), information score (IS), Cohen’s formula
(Cohen), Coleman’s formula (Coleman), the C1 and C2 formulas. These formu-
las are described in [3,4]. In post-pruning, ELEM2 checks each attribute-value
pair in the rule in the reverse order in which they were selected to determine if
removal of the attribute-value pair will decrease the rule quality value. If not, the
attribute-value pair is removed and the procedure checks all the other pairs in
the same order again using the new rule quality value resulting from the removal
of that attribute-value pair to discover whether another attribute-value pair can
be removed. This procedure continues until no pair can be removed.
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4 The Classification Method

The classification procedure in ELEM2 considers three possible cases when a new
example matches a set of rules. (1)Single match. The new example satisfies one
or more rules of the same class. In this case, the example is classified to the class
indicated by the rule(s). (2)Multiple match. The new example satisfies more than
one rule that indicates different classes. In this case, ELEM2 activates a conflict
resolution scheme for the best decision. The conflict resolution scheme computes
a decision score for each of the matched classes as follows: DS(C) =

∑k
i=1 Q(ri),

where ri is a matched rule that indicates C, k is the number of this kind of rules,
and Q(ri) is the rule quality of ri. The new example is then classified into the
class with the highest decision score. (3)No match. The new example e is not
covered by any rule. Partial matching is considered where some attribute-value
pairs of a rule match the values of corresponding attributes in e. If the partially-
matched rules do not agree on the classes, a partial matching score between e
and a partially-matched rule ri with n attribute-value pairs, m of which match
the corresponding attributes of e, is computed as PMS(ri) = m

n × Q(ri). A
decision score for a class C is computed as DS(C) =

∑k
i=0 PMS(ri), where k

is the number of partially-matched rules indicating class C. In decision making,
e is classified into the class with the highest decision score.

5 Ranking the Test Examples

The classification procedure of ELEM2 produces a class label for each test ex-
ample. To meet the requirement of our particular application, we design another
prediction procedure which outputs a numerical score for each test example.
The score is used to compare examples as to whether an example more likely
belongs to a class than another example. Intuitively, we could use the decision
score computed in the classification procedure to rank the examples. However,
that decision score was designed to distinguish between classes for a given exam-
ple. It consists of either full-matching scores (when the example fully matches a
rule) or partial-matching scores (when no rule is fully matched with the example,
but partial matching exists). It is possible that an example that only partially
matches some rules of class C obtains a higher decision score than an example
that fully matches one rule of C, even though the fully matched example is more
likely to belong to C than the partially matched example.

In order to rank examples according to their likelihood of belonging to a
class we need to design a criterion that can distinguish between examples given
the class. To do so, we simply adjust the calculation of the decision score in
the classification procedure to consider both kinds of matches (full and partial
matches) in calculating a score for an example. The score is called the ranking
score of an example with respect to a class. For class C and example e, we first
compute a matching score between e and a rule r of C using MS(e, r) = m

n ×Q(r),
where n is the number of attribute-value pairs that r contains and m is the
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number of attribute-value pairs in r that are matched with e. Note that this
calculation covers a full match when m = n, a partial match when < m < n,
and no match when m = 0. The ranking score of e with respect to C is defined
as RS(e, C) =

∑k
i=0 MS(e, ri), where ri is a rule of C and k is the number of

rules of C.
The ranking algorithm of ELEM2 ranks the test examples according to both

the predicted class label (produced by ELEM2’s classification program) for the
example and the ranking score of that example with respect to a specified class
C, e.g., the minority class for an imbalanced data set. It places test examples
that are classified into the specified class C in front of other test examples and
ranks the examples in each group in decreasing order of the ranking score with
respect to C.

6 Experiments with the Pharmaceutical Data Set

6.1 Comparison on Rule Quality Formulas

Our first objective is to determine how each of the rule quality formulas in-
corporated in ELEM2 reacts to the imbalance in our data set. To achieve this
goal, we run ELEM2 with different rule quality formulas on our training data
set. For each formula, a set of rules is generated. We then test these rules by
running the classification program of ELEM2 to classify the examples in the test
set. This program generates a discrete output for each test example, which is
the predicted class label for that example. The performance of this classifier is
measured by precision and recall (defined in Section 2.2) on the smaller class
that corresponds to the active compounds. We also combine precision and recall
by way of a geometric mean (g-mean) defined as

√
precision ∗ recall. Figure 1

shows the precision, recall and g-mean of ELEM2’s classification program using
different rule quality formulas. Generally, formulas that produce higher recalls
give lower precisions and formulas that give lower recalls produce higher pre-
cisions. In terms of g-mean, the G2 (the G2 likelihood ratio statistic) formula
produces the best result, while the WS (a weighted sum of rule consistency
and rule coverage) and Prod (a product of rule consistency and rule coverage)
formulas have the worst performance.

We then run the ranking program of ELEM2 to rank the test examples
according to the ranking score defined in Section 5. The performance of this
program is measured by recall-level precisions, case-level precisions and an aver-
age precision.1 Recall-level precisions are the precisions at a list of recall cutoff
1 These measures are used in the TREC competitions of the information retrieval

community [8]. We adopt these measures for use in our application because the
requirement for our application (presenting predicted active compounds in an order
in which the most probably active compounds are ranked first) is similar to the
requirement in information retrieval, which ranks the retrieved documents according
to the degree of relevance.
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Fig. 1. Classification Performance of the Formulas

values. The recall cutoff values used are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 1. A graph on recall-level precisions depicts tradeoffs between precision and
recall. Case-level precisions are the precisions at a list of case cutoff values. A
case cutoff value is a number of cases being “retrieved”. A precision at a case
cutoff value n is the precision of the first n examples in the ranked list of test
examples. The case cutoff values we used are 5, 10, 20, 30, 50, 100, 200, 400,
800, and 1000. Compared to recall-level precisions, case-level precisions give a
better picture on the precisions at the top ranked cases. Average precision is
the average of the precision values at the points where active compounds were
correctly recognized in the run.

Figure 2 illustrates recall-level precisions and case-level precisions of the re-
sults generated by the ranking program using different formulas. In the figure,
we only show the results for 7 formulas; the curves for our remaining 4 for-
mulas (whose performance ranked medium) were deleted for graph clarity. The
average precisions from each of the 11 formulas are shown in Figure 3. From
recall-precision curves, we observe that formula G2 takes the lead generally, es-
pecially in the small to middle recall cutoff region. However, at the recall cutoff
value of 0.1, formula LS (measure of logical sufficiency) takes the lead, followed
by formula MD (measure of discrimination). The right graph of Figure 2 presents
a clearer picture on the top ranked cases, which shows that LS is the “winner”
for the top 50 cases and the χ2 statistic (Chi) also performs well within this top
region. In terms of average precision, Figure 3 shows that G2 takes the lead,
followed by LS and then MD.

We also evaluate the result of each run using the ROC convex hull method
proposed by Provost and Fawcett [13]. A ROC curve shows how the percentage of
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correctly recognized active compounds (recall or “true positive rate”) depends
on the “false positive rate”, i.e., the percentage of the incorrectly classified inac-
tive compounds. ROC curves illustrate tradeoffs between recall and false alarm
rate for continuous output classifiers. The performance of a discrete classifier
(which outputs only class labels) can be depicted as a point in the ROC space.
A classifier is optimal for some conditions if and only if it lies on the northwest
boundary (i.e., above the line y=x) of the convex hull of the set of points and
curves in the ROC space. A nice feature of the ROC convex hull method is
that the optimal classifier in terms of expected cost can be determined using
iso-performance lines [13] in the ROC space according to the class distribution
and the misclassification costs. Figure 4 depicts the ROC curves generated from
the results of 7 formulas. Again the curves for the 4 other formulas were deleted
for clarity. Figure 4 also shows the points corresponding to the performance of
ELEM2’s “discrete” classifier. Each point in the graph corresponds to a rule
quality formula that was used to generate the classifier. The convex hull of these
7 curves and 11 points is shown in the picture. We notice that none of the
discrete classifiers is optimal because their corresponding points are not on the
convex hull curve. An optimal performance in terms of misclassification costs
and class distribution can be obtained by setting a threshold for the continu-
ous output value for the continuous “classifier” whose curve intersects with the
convex hull. In our application, the cost of missing an active compound (cost
of a false negative error) is potentially much higher than the cost of screening
an inactive compound in the lab (cost of a false positive error). Suppose the
false negative cost is 10 times higher than the false positive cost and the true
distribution of the data is the same as the distribution in the training data. We
can draw an iso-performance line (the straight line of 5x + 0.1555) in the ROC
space in Figure 4 based on the formula provided in [13], which intersects the
convex hull. The intersection of this line and the convex hull is the point that
determines the threshold value for the continuous-output classifier in order to
obtain the optimal performance. These ROC curves also clearly show that G2
is the leading formula, followed by LS and then MD, which correlates with the
conclusion obtained from average precisions in Figure 3.

6.2 Balancing the Data

We would like to discover whether decreasing the imbalance in the training data
set would improve the predictive performance. For this purpose, we created 6
additional training sets by duplicating the examples of active compounds to
increase the prevalence of active compounds in the training data. Distributions
of active compounds in these 6 training sets are 4%, 8%, 14%, 25%, 40% and
50%, respectively.

We picked three formulas (G2, MD, Cohen) ranging from good to poor based
on the above results for use in this experiment. Figure 5, illustrates the results
of increasing the minority class prevalence in terms of g-mean, precision, recall
and average precision for the three formulas, respectively. All the three graphs
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indicate that, generally, as the percentage of the active compounds in the train-
ing set increases, recall increases, but precision decreases. As a result, g-mean
does not have significant changes. Also, average precision (for continuous output
classifiers) does not change significantly either.

7 Adjusting the Learning Algorithm

Finally, we would like to determine whether adjusting the learning algorithm
for an imbalanced data set would improve predictive performance. By analyzing
the rules generated from each rule quality formula, we found that some formulas
lead to generation of very few rules for the majority class. This is due to the
fact that, when post-pruning a rule, removing an attribute-value pair from a
rule for the majority class can greatly increase the coverage of the rule. In this
case, for some rule quality measures in which the rule coverage makes a positive
contribution, the value of rule quality is mostly likely to increase when removing
an attribute-value pair, which results in general rules that cover a large number
of cases of both the majority class and the minority class. This kind of rule
does not describe well the instances in the majority class and has limited power
in discriminating between the two classes. Therefore, we adjust the learning
algorithm to only post-prune the rules generated for the minority class when the
data set is extremely imbalanced. This adjustment is based on the assumption
that we have enough training cases for the majority class and there is no noise
in the training set for this class. We still post-prune the rules for the minority
class because the training examples for the minority class is relatively rare and
we do not want the rules to overfit the minority class examples.

We use five rule quality formulas that led to generation of a relatively small
number of rules for the majority class, based on the above experiments, to test
our strategy for adjusting the learning algorithm. The left graph of Figure 6
compares, in terms of g-mean and average precision, the results for pruning only
minority class rules to the results for pruning rules for both classes. The results
show that this adjustment greatly improves the predictive performance of these
formulas. The right graph of Figure 6 shows the improvement on the recall-level
precisions for the χ2 statistic formula.

8 Conclusions

We have compared a number of rule quality formulas on an extremely imbalanced
data set for identifying active chemical compounds. The rule quality formulas are
used in ELEM2’s rule induction and classification processes. Among the 11 tested
statistical and empirical formulas, the G2 likelihood ratio statistic outperforms
others in terms of g-mean, average precision and recall-level precisions. The
ROC analysis also shows that G2 gives the best results. Other formulas that
perform relatively well on this data set include the measure of logical sufficiency
(LS) and the measure of discrimination (MD). In evaluating these formulas, we
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observed that ROC curves give a clearer picture than recall-precision curves
on the overall performance of continuous output classifiers. Case-level precision
curves produce a better picture on precisions at the top ranked cases. Another
good measure of performance is average precision, which is good at ranking
the evaluated continuous output classifiers. In our evaluation of rule quality
formulas, the conclusion drawn from average precisions correlates well with the
observation on ROC curves.
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We also observed that increasing prevalence of the minority class in the train-
ing data does not improve predictive performance on our test data. This is be-
cause our learning algorithm (and many others for that matter) is based on
statistical measures and assumes that the classifier will operate on data drawn
from the same distribution as the training data. In terms of adjusting learning
algorithm for extremely imbalanced data sets, we found that allowing rules for
the majority class to “overfit” (without pruning) can improve predictive per-
formance for rule quality formulas in which coverage of a rule makes a positive
contribution to the rule quality value. Our future work includes evaluating a
variety of statistical and machine learning methods on this imbalanced data set.
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Abstract. This paper presents a holonic co-ordination infrastructure for elec-
tronic procurement. The agent-based infrastructure consists of two components
which are holonicly made up of a recursive hierarchy of three different agent
types: a co-ordination server and a set of co-ordination assistant agents. The co-
ordination server represents a platform through which buyers and sellers can
interact, provides matchmaking services, and is equipped with co-ordination
mechanisms such as auctions, negotiations and coalition formation mechanisms.
The co-ordination assistant agents support their users, i.e. buyers and sellers, in
their market interactions on the server. Particularly, they support their users in
purchasing and selling of product bundles because adopting optimal bidding and
pricing strategies while taking part in many auctions simultaneously is a task too
complex for humans to solve optimally. The holonic structure of the co-
ordination assistant agents and the co-ordination server helps to reduce com-
plexity while allowing a high grade of adaptability and flexibility.

Keywords. Agent-based Co-ordination, Intelligent Agents, Holonic Multi-agent
Systems, Auctions, Agent-based E-Commerce, Supply Chain Management.
Motivation

1 Motivation

In today’s markets, business entities are forced to interact with other market partici-
pants flexibly in order to stay competitive. The trend towards virtual enterprises [14]
and supply webs [12] shows that market participants are forced to form flexible busi-
ness partnerships that require more interactions with more autonomous business enti-
ties than ever before.

Agents offer the advantage that they can automatically and flexibly react to changes
in the environment since they can autonomously perform tasks on behalf of their us-
ers. Since the interactions between business partners in virtual enterprises or in elec-
tronic markets together with their interrelations can get too complex for humans to
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handle efficiently encapsulating business entities (e.g. buyers/sellers, suppli-
ers/producers/retailers) within agents has been suggested.

For handling the interactions efficiently, an agent-based co-ordination infrastructure
is needed that provides a set of co-ordination services (e.g. matchmaking services) as
well as co-ordination mechanisms (e.g. auctions, coalition formation mechanisms,
profit division mechanisms). It brings together potential partners with common, or
complementing, goals and enables them to co-ordinate their activities by using the
provided co-ordination mechanisms.

In this paper, we will describe the structure of a holonic co-ordination server that
fulfils these requirements.

2 Holonic Multi-agent Systems

In many domains a task that is to be accomplished by an agent can be hierarchically
decomposed into particular subtasks. Thus, the task’s completion may require the
distribution of the subtasks to some subagents as well as the combination of their re-
sults. To model this combined activity the concept of holonic agent or holon has been
introduced [7].

The concept is inspired by the idea of recursive or self-similar structures in biologi-
cal systems. Analogous to this, a holonic agent consists of parts which in turn are
agents (and maybe holonic agents). The holonic agent himself is part of a whole and
contributes to achieve the goals of this superior whole. Along with agents, holonic
agents share the properties of autonomy, goal-directed behavior and communication.
But a holonic agent possesses capabilities that emerge from the interaction of suba-
gents. A holon may have actions at its disposal that none of its subagents could per-
form alone.

Three forms of association are possible for a holon: first, subagents can build a
loose federation sharing a common goal for some time before separating to regulate
their own objectives. Second, subagents can give up their autonomy and merge into a
new agent. Third, a holon can be organized by a head which moderates the activities
of the subagents and represents the holon to the agent society for all kinds of interac-
tion processes.

Multi-Agent Systems (MAS) are well suited for dealing with complex tasks (e.g.
planning tasks) that can be divided into several subtasks. Each subtask is then repre-
sented by an agent that autonomously solves the task. MAS exhibit the features of
stability and robustness since one agent can often take the role of an other agent that
has been delayed or suspended for some reason. Furthermore, agents in MAS are
characterized by their capability of exchanging messages to achieve coordination and
cooperation.

MAS consisting of holonic agents are called holonic multi-agent system (H-MAS)
[2]. In a H-MAS, autonomous agents may join others and form holons. But they are
also free to reconfigure the holon, to leave the holon and act autonomously, or to form
new holons with other agents. Holonic MAS share the advantages of MAS, but also
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provide additional advantages. Holonic agents are highly flexible at solving their tasks,
having the ability to deal with inevitable change, since they are self-organizing and
decentralized. Finally, as an advantage of analysis and building a system, holonically
structured MAS exhibit a mapping of conceptual view and operational implementa-
tion. The implementation reflects the conceptual structure.

Therefore, it seems to be a natural way to represent many organization forms in e-
commerce (e.g. virtual enterprises, supply webs) by a H-MAS because the holonic
agent-based structuring supports their flexible and fluid formation as well as their
dissolving. Furthermore, as the partners of a supply web or a virtual enterprise the sub-
agents of a holon have to pursuit at least one common goal and thus show a common
goal-directed behavior.

Holonic agents as well as atomic sub-agents and operative supply chain units can be
represented by Java agents furnished with a high level control architecture, called
Procedural Reasoning System (PRS) [11]. This PRS control architecture has the ad-
vantage that the Java PRS agents can behave goal-directed while staying responsive.
They execute predefined procedures and plans that lie on a plan stack but are able to
replan the course of their actions when an unforeseen event occurs. The agent control
unit (ACU) of our agents executes according to the PRS model the following main
steps: Situation Recognition, Goal Activation, Planning, and Plan Execution.

3 A Holonic Co-ordination Infrastructure

In the following, we will describe a holonic coordination infrastructure which we have
implemented at the German Research Center for Artificial Intelligence (DFKI). The
infrastructure is made up of three parts that all are holonicly structured. Two of them,
namely the user-supporting co-ordination assistant agent (CA) and the auction-
performing auction matchmaker agent (AMM) are holonic agents that are hierarchi-
cally structured. The requests of the CAs in the market environments are brought
together with the services offered by several AMMs by the matching services of fa-
cilitator (FA) and domain matchmaker agents (DMM). FAs and DMMs integrate CAs
and AMMs in a mediation holon which is organized as a networked federation of
trusted agents. In the next three sections we will illustrate the holonic structure of the
three parts of our infrastructure in detail.

3.1 The Holonic Co-ordination Assistant Agent

Since most products consist of many parts, a single producer has to be present in a
great number of auctions (maybe several auctions for one part or raw material). This
setting is an ideal application scenario for agents and especially multi-agents. An agent
can be used as an auction assistant, furnished with some authority to participate in an
auction, making bids until a specified amount. Furthermore, since the number of auc-
tions increases, many auctions have to be co-ordinated. It may be interesting to use
one single agent to manage all different auctions by one agent, if the same product part
is provided by several auctions. If there are many auctions for different parts, the bids
that can be made in different auctions put constraints on each other in a complex,
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reciprocal way. To deal with this constraints, multi-agents for different auctions can be
used. The flexibility of multi-agents systems, their ability to deal with online decisions
in decentralized domains, pays attention to the dynamic changes of situation in auc-
tion-oriented marketplaces.

The Co-ordination assistant agent is in charge of fulfilling all the procurement
tasks of an user which can be a private person or company. The agent communicates
with its user through an user interface and represents the user to the external market
entities as e.g. facilitators, auction houses and other market participants. It has a cer-
tain set of constrained resources, e.g. an amount of money, on its disposal.

3.1.1 Holonic Structuring for Reducing Complexity

An approach to overcome this complexity problem is to structure the co-ordination
assistant agent as an hierarchical holon as shown in figure 1. This means, the co-
ordination assistant agent is made up of a recursive hierarchy of agents being in charge
of achieving the procurement tasks and subtasks of the co-ordination assistant agent.
Since each task consists in purchasing or selling a bundle of items, the co-ordination
assistant agent spawns bundle agents for non-basic bundles of tasks (e.g. a bundle of a
product purchase task and a corresponding task for transporting the purchased product)
which again recursively spawn both other bundle agents for non-basic sub-tasks as
buying and selling sub-bundles and executor agents for performing basic tasks as
buying and selling basic items (e.g. products or services) or monitoring ongoing auc-
tions. All the agents of the holon have one common goal since they are all striving for
fulfilling the assigned tasks while expending as few resources as possible.

3.1.2 Functionality of the Agents

Each bundle agent that wants to perform a basic task, has to gather information about
appropriate auction houses at first. Subsequently, it has to select an auction house
together with an advantageous auction mechanism whose rules give him a strategic
advantage. After that, the bundle agent registers at the auction house server. While
spawned sell executor agents monitor the course of an auction, buy executor agents
also are endowed with bidding strategies for making bidding decisions depending on
the auction mechanism they are taking part in.

3.1.3 Bottom-Up Information Flow

All the communication of the bundle and executor agents with external market entities
is propagated upwards and finally routed over the co-ordination assistant agent if
authentication mechanisms are required. Otherwise, in order to avoid communication
bottlenecks, also direct communication to market entities may be allowed but since the
co-ordination assistant agent acts as the head of the holon he is generally supposed to
be the holon‘s communication interface. Information collected by monitor actions is
also propagated upwards. The information propagated upwards in the holon is needed
by the bundle agents in order to dynamically adapt their resource allocation decisions.
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3.1.4 Top-Down Resource Allocation

The resource allocation decisions are made top-down by the superior agents. The co-
ordination assistant agent possesses a priority relation over the set of tasks it strives to
accomplish and allocates resources to the corresponding subordinated bundle agents
according to the priorities of the tasks they are striving to accomplish. They again
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3.2 A Holonic Co-ordination Server

The co-ordination server is included in our co-ordination infrastructure in order to
provide to the business agents in a supply web or electronic marketplace a generic
platform with services, such as auction mechanisms, that enable them to co-ordinate
their interrelated activities in a decentral fashion.

Our co-ordination server is designed as an agent that can be easily accessed by
other agents for registration, requests, etc..

3.2.1 The CMM Agent
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Fig. 2. The holonic co-ordination server

co-ordination processes which are performed by so-called service pro-
ination execution agents (CX). The CMech agents get the current infor-
the running co-ordination processes (start, termination, variations, etc.)
 and propagate this information together with the information about the
dination processes upwards to the CMM agent.
 agent couples requesting agents (which want to find or start an co-
 a given item) with the CX agents. It stores the information about the CX
tabase and updates the information depending on the status reports of the
s. After it has matched the request with its current database, the CMM
returns a ranked list of relevant CX or CMech agents to the requesting
questing agent then has to contact and negotiate with the relevant CX or
s to get the services/items it desires.
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 performed independently from the CMM agent (see figure 
smission bottlenecks, and even if a failure of the CMM ag
o-ordinations would still work [12]. Furthermore, the CMM 
ctionalities, e.g. to build a history about co-ordinations, their

on of customers over time and goods.
 CMech Agent

hierarchy level of our co-ordination server is built up of CMech agents which
ed with regard to the kind of mechanisms the co-ordination house wants to
ere are CMech agents for all kind of co-ordination mechanisms, e.g. for the
 Dutch- or Vickrey-auction [3]. If many auctions are running at the same
 single agent can no longer handle all the requests in an efficient way. Thus,
h agent does not execute any co-ordination on its own. Instead it creates new
ts which are specially designed to deal with a specific instance of a co-
n mechanism imposed by the CMech agent, e.g. an auction for a certain good.
sting CX agents are overloaded the CMech agent can start a new CX agent
ndles the next set of co-ordination tasks what results in load balancing
gent networks [9]. Each of the CMech agents administrates a variable num-
X agents which perform the same co-ordination mechanism. Thus, these
n be bundled into one holon per mechanism. The holon is represented by an
gent which is the head of the holon and co-ordinates the distribution of the
tion tasks to its subagents.

 CX Agents

 level of the hierarchy contains CX agents which are able to execute multiple
tions of the same mechanism. Only if such an agent is overloaded, another
his type is created and may be started at/on another place/computer in the co-
n server network, guaranteeing a good performance. If a co-ordination task
 the CX agent having performed the task will push the information about that

Fig. 3. Agent relationships by using the co-ordination server
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rver

escribe the interactions between the agents by taking a look at 
 be executed by the co-ordination server (see figures 3 and 4):
ig. 4. Interaction between sellers, buyers and the co-ordination server
ents

r wants to start an auction and sends an appropriate message to the CMM
hich the item to be auctioned off as well as the seller‘s preferences con-

e co-ordination/auction mechanism to be used and the auction monitoring
re specified. Then the CMM agent triggers an appropriate CMech agent
wns a CX agent for executing the auction. After that the CMech agent

the address of the spawned CX agent back to the superior CMM agent.
M stores the information about the started auction in its database and sends

s of the CX agent executing the auction to the seller, if the seller wants to
ion monitoring (see the dotted line in figure 3) access to the CX agent. Oth-
 CX agent automatically sends information about the auction state in inter-
 seller.
executing an co-ordination task, CX agents forget that they are part of a
 act as single agents. Thus it is possible for co-ordination participants to
em directly, this avoids the need to parse all messages from the head of the

M) down to the CX agents. Therefore, the CX agents do not only have to
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push the results of executed co-ordination tasks to their upper CMech agent but also to
all participants in that co-ordination.

Hence a buyer that is by chance interested in buying this specific item asks the
CMM agent if such an item is currently auctioned off. The CMM agent says yes to
this question and sends the address of the corresponding CX agent stored in its data-
base to the buyer. After that the buyer registers at the CX agent and monitors as well
as bids in the auction. After the auction has finished the CX agent reports its outcome
to the superior CMech agent that informs the bidders about it.

The upper two levels of the hierarchy consist of holonic agents whose lifecycles are
not limited to any point of time. The lowest level includes only agents which do not
have to exist all the time and can be created and terminated dynamically.

Generally, by using a holonically structured hierarchy, all incoming and outgoing
messages have to be transmitted to the head [8], i.e. the CMM agent in our server
structure. But sending all messages to the head of the holon results in a very narrow
bottleneck for the system, whereby all co-ordination tasks are slowed down. Thus our
CMM agent is only used for performing co-ordination and information tasks within
the holon.

4 Conclusion & Further Work

In this paper, we have presented an agent-based co-ordination infrastructure for elec-
tronic procurement. It consists of two components whose holonic structure is three-
layered. We have already implemented this infrastructure as well as supply chain
agents in Java. First results in coordinating the procurement and supply activities of
the agents by the use of the co-ordination server and several co-ordination mecha-
nisms, as the matrix auction [3], simulated trading [16] and the extended contract net
protocol [16], are very promising.

Our main goal is to extend the developed infrastructure by integrating more co-
ordination mechanisms such that the agents can co-ordinate their activities more effi-
ciently by using them. Therefore, our future activities will mainly consist in the devel-
opment of a set of agent-based co-ordination and negotiation mechanisms as well as
their integration in the co-ordination infrastructure. The developed mechanisms are
intended to support the configuration and co-ordination of distributed business proc-
esses as well as the (re)allocation of resources and tasks within supply webs. Moreo-
ver, we will investigate their effects on supply chain execution by applying them to
simulation scenarios.

The developed agent technology could be directly applied in related areas, e.g. for
implementing electronic markets and virtual enterprises. Our work has been supported
by the European Union and the SAP subsidiary SAP Retail Solutions.
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Abstract. As new transactions update data sources and subsequently
the data warehouse, the previously discovered association rules in the old
database may no longer be interesting rules in the new database. Fur-
thermore, some new interesting rules may appear in the new database.
This paper presents a new algorithm for efficiently maintaining dis-
covered association rules in the updated database, which starts by
computing the high n level large itemsets in the new database using the
available high n level large itemsets in the old database. Some parts of
the n− 1, n− 2, . . . , 1 level large itemsets can then be quickly generated
by applying the apriori property, thereby avoiding the overhead of
calculating many lower level large itemsets that involve huge table scans.

Keywords: Maintaining Mining Asociation Rules, High Level Large
Itemsets, Low Level Large Itemsets, Apriori Property

1 Introduction

Data mining is a rapidly evolving area of data analysis that attempts to identify
trends or unexpected patterns in large pools of data using mathematical tools.
It could help end users extract useful business information from large databases
and warehouses.

Association rule mining is a data mining technique which discovers strong
associations or correlation relationships among data. Given a set of transactions
(similar to database records in this context), where each transaction consists of
items (or attributes), an association rule is an implication of the form X → Y ,
where X and Y are sets of items and X ∩ Y = ∅. The support of this rule
is defined as the percentage of transactions that contain the set X, while its
confidence is the percentage of these “X” transactions that also contain Y. In
association rule mining, all items with support higher than a specified minimum
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support are called large or frequent itemsets. An itemset X is called an i-itemset
if it contains i items. The Apriori property states that an n-large itemset must
have all its subsets also large.

Agrawal et al. [1] presents the concept of association rule mining and an ex-
ample of a simple rule is “98% of customers who purchase milk and bread also
buy eggs”. Since discovering all such rules may help market baskets or cross-
sales analysis, decision making, and business management, algorithms presented
in this research area include [1,6,4]. These algorithms mainly focus on how to
efficiently generate association rules and how to discover the most interesting
rules. However, data stored in the database are often updated making associ-
ation rules discovered in the previous database possibly no longer interesting
rules in the new database. Furthermore, some new interesting rules may have
developed in the new database which were not in the old database. Thus, work
on incremental maintenance of association rules include [3,2].

In this paper, we present a new algorithm that efficiently generates incremen-
tal association rules in the updated database by applying the Apriori property
[1]. The new algorithm first computes the high level n-large itemsets. Then, it
starts by generating all lower level n − 1, n − 2, . . . , 1 large itemsets. This ap-
proach cuts down the overhead of generating some low level large itemsets that
have no chance of being large in the updated database, there by reducing the
number of database table scans needed to compute large itemsets.

1.1 Related Work

The problem of mining association rules is decomposed into two subproblems,
namely (1) generating all large itemsets in the database and (2) generating
association rules in the database according to the large itemsets generated in
the first step. Apriori algorithm [1] is designed for generating association rules.
The basic idea of this algorithm is to find all the large itemsets iteratively. In the
first iteration, it finds the large 1-itemsets L1 (each large 1-itemset contains only
one item). To obtain L1, it first generates candidate set C1 which contains all
1-itemsets of basket data, then the database is scanned for each itemset in the
set C1 to compute its support. The items with support greater than or equal to
minimum support (minsupport) are chosen as large items L1. The minsupport
is provided by the user before mining. In the next iteration, apriori gen function
[1] is used to generate candidate set C2 by joining L1 and L1 and keeping all
unique itemsets with 2 items in each. The large itemsets L2 is again computed
from the set C2 by selecting items that meet the minsupport requirement. The
iterations go on by applying apriori gen function until Li or Ci is empty. Finally,
the large itemsets L is obtained as the union of all L1 to Li−1. FUP2 algorithm is
proposed by [3] to address the maintenance problem for association rule mining.
Assume that D denotes the old database, D′ denotes the new database, D−

denotes the deleted part of the old database, D+ denotes the newly inserted
part to the old database, D∗ denotes unchanged part in the old database. S+

denotes the support count of itemset X in D+, S− denotes the support count
of itemset X in D−, S denotes the support count of itemset X in D, S’ denotes
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the support count of itemset X in D′. Obviously, D∗ = D − D− = D′ − D+.
This algorithm utilizes the idea of Apriori algorithm, to find the large itemsets
iteratively. The difference between FUP2 and Apriori is that FUP2 separates
the candidate itemsets in the new database into two subsets in each iteration.
That is, in kth iteration, candidate itemsets Ck is divided into Pk and Qk, where
Pk is the intersection of Ck and Lk, Lk is the the previous large itemsets of size
k in the old database. Qk is the remaining part of Ck not included in the set
Lk, that is, Qk = Ck − (Ck ∩ Lk). For all itemsets x in Pk, the support S of x
in the old database is known. Thus, in order to compute the new support S′ for
each itemsets in Pk, it only scans D+, D−, to get S+, S− and compute S′ as
S′ = S+S+ −S−. For each itemset x in Qk, which represents the new candidate
sets that are not part of the old large itemsets, since the support of x in the
old database is unknown, the new database D′ is scanned to decide if x should
be added to the new large itemset L′

k. DELI algorithm [5] applies a sampling
technique to estimate the support counts using an approximate upper/lower
bounds on the amount of changes in the set of newly introduced association
rules. A low bound would mean that changes in association rules is small and
there should be no maintenance.

1.2 Contributions

This paper contributes by proposing a new algorithm called MAAP (maintaining
association rules with apriori property) for incremental maintenance of associa-
tion rules in the updated database. The algorithm utilizes an Apriori property,
and starting with the high level large itemsets in the previous mining result, it
computes the equivalent high level large itemsets in the new database as well as
infers some low level large itemsets in the new database. Thus, this algorithm
eliminates the need to compute some low level large itemsets and save on rule
maintenance time. It yields more benefit when high level large itemsets generate
a high percentage of low level large itemsets.

1.3 Outline of the Paper

The organization of the rest of the paper is shown as follows: section 2 presents
an example; section 3 presents a detailed formal algorithm; section 4 presents
performance analysis of the algorithm; and finally, section 5 presents conclusions
and future work.

2 An Example

Since MAAP algorithm being proposed in this paper is related to both the
Apriori and FUP2 algorithms, we first apply both of these algorithms to an
example in section 2.1 before applying MAAP to the same example in section
2.2.
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2.1 Apriori and FUP2 on Sample Database

Suppose we have a database DB with set of items, I=A, B, C, D, E, F and
MinSupport=3 transactions. A simple database transaction table for illustrating
the idea is given as Table 1.

Table 1. The Example Database Transaction table

TID Items
100 A B C D F
200 A B C D E
300 B C D
400 A D E
500 A C D
600 A B C E

If we delete transacion 400, and add new transaction 700 B D E, we can get
an updated database DB’, which is suitable for FUP2.

To compute the large itemsets in the old database (Table 1), Apriori algo-
rithm first generates the candidate set C1={A, B, C, D, E, F}, then scans the
database to obtain the support of each itemset in C1. Then, it throws away the
item F which has a support that is lower than 3. So, L1 = {A, B, C, D, E}. In the
second iteration, Apriori computes C2 = apriori gen(L1)={AB, AC, AD, AE,
BC, BD, BE, CD, CE, DE}. Then, it scans DB to obtain the support of each
itemset in C2. This results in an L2 = {AB, AC, AD, AE, BC, BD, CD}. During
the third iteration, C3 = apriori gen(L2)={ABC, ABD, ACD, BCD}. Apriori
scans database and gets the support of these itemsets to generate L3 = {ABC,
ACD, BCD }. Next step computes C3 = Apriori gen(L3)= {}, causing the algo-
rithm to terminate and resulting in an overall Large itemsets L = L1 ∪L2 ∪L3,
which is, {A, B, C, D, E, AB, AC, AD, AE, BC, BD, CD, ABC, ACD, BCD}.
The generated L above will represent the old association large items sets from
the old database DB. In order to update the large itemsets L to L’ for the newly
updated database DB’, the Apriori algorithm would go through all C ′

1, L
′
1, . . . ,

L′
3 to produce an L′ of {A, B, C, D, E, AB, AC, AD, BC, BD, BE, CD, ABC,

ACD, BCD}.
Applying the FUP2 algorithm on the same updated database DB’ with

I=A,B,C,D,E,F and minsupport of 3 transactions will proceed as follows. In
the first step, we get the new C ′

1 as the previous C1 in the old database. That
is, C1 = {A,B,C,D,E, F}. Then comparing C1 with L1 (as computed with
the Apriori above), would lead to breaking C1 into two parts, (1) the set of
elements common to both C ′

1 and L1, called set P1={A, B, C, D, E } and (2)
the set of elements in C ′

1, which are not in the first set P1, called set Q1={F}.
FUP2 proceeds to compute the support of each itemset in P1, to obtain all
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large itemsets in P1 that are still large itemsets in the new database in or-
der to include them to the new large itemset L′

1. It further computes the sup-
port of each itemset in Q1 in the new database to see if these previous small
items are now large. With this example, F is still a small itemset in the new
database. Thus, the updated new level 1 large itemset, L′

1 = {A,B,C,D,E}.
The next step applies apriori gen function to generate candidate itemsets C ′

2,
then goes on with the rest of the iterations to compute L′

2, . . . , L
′
k when L′

k+1
is empty. The result of each step is shown below. The C2 generated from L′

1 is
C ′

2 = {AB,AC,AD,AE,BC,BD,BE,CD,CE,DE}, which is broken into P2
and Q2, P2 = {AB, AC, AD, AE, BC, BD, CD}, Q2={BE, CE, DE}. L′

2={AB,
AC, AD, BC, BD, BE, CD} is computed from P2 and Q2. C ′

3 is generated from
L′

2, C
′
3={ABC, ABD, ACD, BCD, BCE, BDE} and when broken into P3 and Q3

gives P3 = {ABC,ACD,BCD}, Q3 = {ABD}. The new level 3 large itemsets,
L′

3 = {ABC,ACD,BCD}.

2.2 The Proposed MAAP Algorithm on Example Database

Agrawal [1] proposes an Apriori property, which states that “All non-empty
subsets of a large itemset must be large”. For example, if a large 3-itemset is
L3={123}, we can immediately infer that the following itemsets are large as
well: {12}, {13}, {23}, {1}, {2}, {3}. Based on this principle, when association
rules are to be maintained in the updated database, the large itemsets can be
computed from the highest level large itemsets, that is, from Lk. If any itemset in
Lk is still large in the new database, its lower level subset itemsets are included
to their appropriate level large itemsets in Lk−1, Lk−2, . . . , L1. For example,
since L3 = {123} is confirmed to be still large in the new database, MAAP
includes {12}, {13}, {23} to L2 and {1}, {2}, {3} to L1. By so doing, some
computation time is saved. Utilizing the large itemsets computed in section 2.1
as the result in the old database, the MAAP algorithm proceeds by checking if
each itemset in L3 = {ABC, ACD, BCD} is still large in the new database. Since
ABC is large in the new database, AB, AC, BC, A, B, C are also large itemsets.
Thus, ABC is added to L′

3 (L′
i denotes the large i-itemsets in the new database),

add AB, AC, BC to L′
2, add A, B, C to L′

1. It continues to test the next itemset
in L3 which is ACD and since ACD is large, AC, AD, CD, A, C, D are also
large itemsets. MAAP adds ACD to L′

3, if not already a member of this large
itemset. After testing ACD, L′

3 has elements ABC, ACD; L′
2 has AB, AC, BC,

AD, CD; L′
1 has A, B, C, D. Next, the last itemset in L3 is tested, which is BCD.

BC, CD, BD, B, C, D are large itemsets since BCD is a large itemset. These
itemsets are included to L′

3, L
′
2 and L′

1 respectively. The temporary results at
this stage are: L′

3 = {ABC,ACD,BCD}, L′
2 = {AB,AC,BC,AD,CD,BD},

L1′ = {A,B,C,D}. These are not yet the final updated large itemsets in the new
database. These large itemsets are only some large itemsets in the old database
that remain large itemsets in the new database.

The next step checks the itemsets in each of the old L1 to Lk−1 large itemsets
not yet in the corresponding new L′

1 to L′
k−1 large itemsets to see if they are still

large in the new database. Continuing with the running example, L1 −L′
1 = {E}
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represents large 1-itemsets in the old database not yet in the so far computed
L′

1 = {A,B,C,D}. There is need to scan the new database to obtain the support
of item E which is included in the new large itemset if this support is greater
than or equal to minimum support. Since E is large, the algorithm adds E to
L′

1. The same way L2 - L′
2={AE} is also used to compute additional elements of

L′
2 as {} since AE is not large. To complete the computation of large itemsets,

the algorithm finally checks all previous small itemsets in the old database to
see if they are now large in the new database. For 1-itemset, to compute the old
small itemsets, e.g. S1, MAAP subtracts the large 1-itemsets from its candidate
set, C1. Thus, S1 = C1 - L1 = {F}. The algorithm scans the new database for
the support of F . Since this support does not meet the minsupport requirement,
then F is still not a large itemset. For 2-itemsets, S2 = C2 - L2 = {BE, CE,
DE}. After scanning the new database, only BE is a large itemset and this is
included in the L′

2 to make L′
2 = {AB,AC,AD,BC,BD,BE,CD}. Since these

itemsets were small in the old database, they are not part of the old candidate
itemset and thus, we need to modify the new candidate itemset one level higher
than the computed large itemset. Here, additional C ′

3 = L′
2 ./ {BE}= {BDE},

those new candidate itemsets are added to S3. And C ′
3 = C ′

3 ∪ additionalC ′
3 =

{ABC, ABD, ACD, BCD, BDE}. For each itemset in the additional C ′
3, MAAP

checks the new database for support and if item is large, it is included in the
new large 3-itemset L′

3. Since none of the elements in the additional C ′
3 is large,

final L′
3 = {ABC, ACD, BCD}. The final large itemsets for all levels is now

L′ = {A,B,C,D,E,AB,AC,AD,BC,BD,BE,CD,ABC,ACD,BCD}.

3 The Proposed Association Rule Maintenance
Algorithm

The steps in the MAAP algorithm being proposed in this paper are discussed
below.

– Step 1: Compute Parts of New large itemsets using only itemsets that were
large in the old database, and are guaranteed to still be large in the new
database because of a superset itemset in a higher level new large itemset.
Assume for each iteration in the old database, we divide the candidate item-
sets into two parts. One part consists of the large itemsets, another part is
the small itemsets. For instance, C1 is divided into L1 and S1, C2 is divided
into L2 and S2, and so on.
Starting with highest level large itemsets in the old database, such as Lk,
we test each itemset of Lk in the new database, by computing their support
scanning only the changed part of the database, to identify any large itemsets
in the new database, which are added to L′

k. L′
k denotes large k-itemsets in

the new database and for each element in this new large itemsets, the algo-
rithm computes the union of all its non-empty subsets, which are included in
the appropriate level new large itemsets L′

k−1, . . . , L′
1 respectively. Continue

to test next itemsets in Lk and include in L′
k if it is still a large itemset in
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the new database, until all itemsets in Lk have been tested. This step has
computed only part of new large itemsets L′

k, Lk−1′ , . . . , L′
1, which come

from large itemsets in the old database that continue to be large itemsets
in the new database. If there are no large itemsets in the new database, the
next lower level large itemset k=k-1 in the old database is used to do the
computation.

– Step 2: Compute for each new large itemset, additional large itemsets that
were large in the old database but not computed in the first step because
their superset higher level itemset is small in the new database, but these
old lower level large itemsets may still be large in the new database.

– Step 3: Compute the rest of the itemsets in the candidate itemsets that may
be large itemsets in the new database. Since by the end of step 2 above, we
reduced the sizes of all level small itemsets and candidate sets, the algorithm
now takes each small itemset Si = Ci − L′

i and scans the new database to
determine if these itemsets are large in the new database. If they are large,
they are included in the appropriate level new large itemset L′

i.
– Step 4: Adjusting all level i candidate sets to include the new large itemsets

previously small in the old database at level (i-1). This accommodates the
set computed above in Step 3 by including all candidate sets that arise from
these new large itemsets.

4 Performance Analysis

Comparing the MAAP algorithm with FUP2 algorithm [3], the most important
benefit is that MAAP avoids computing some parts of large itemsets from the
database, especially, when generating L′

1 and L′
2, which have the longest lists

of candidate itemsets for which the database is scanned to compute their sup-
ports. If a lot of low level large itemsets whch are still large itemsets in the new
database are generated from step 1 of the MAAP algorithm, there is a huge
performance gain in terms of reduced computation time achieved by using the
MAAP algorithm. In the best case, all large itemsets in the old database re-
main large itemsets in the new database and all large itemsets can be computed
from the old high level large itemsets, and the only database scan performed by
MAAP in this case, is equivalent to the number of large itemsets at the highest
level, each of which needs only a scan of the changed part of the database. In the
worst case, all the large itemsets in the old database are no longer large item-
sets in the new database. In this case, time is spent applying step 2 of MAAP
algorithm.

Two experiments were conducted comparing the performance of both FUP2
and MAAP.

– Experiment 1: Given a fixed size dataset (inserted and deleted parts of the
dataset are also fixed), we test CPU execution time at different thresholds
of support for MAAP, FUP2 and Apriori algorithms. The aim of this ex-
periment is to show that performance of MAAP algorithm is better than
that of FUP2 and Apriori algorithms at different levels of support using the
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same dataset size. We choose a synthetic dataset generated with a program
given in [1] with the following parameters. The number of transactions (D)
is one hundred thousand records, that is |D| = 100,000 records, the average
size of transactions (T) (that is, average number of items in transactions) is
5, |T | = 5, average size of the maximal potentially large itemsets (I) (that
is, average number of items in the possibly longest large itemsets) is 2, or
|I| = 2, number of itemsets in the longest large itemsets (L) (that is, the total
number of maximal potentially large itemsets) is two thousand or |L| = 2000,
number of items (N) (the total number of attributes) is one thousand that
N=1000. Assume the size of updated (inserted) dataset is 15,000 records,
the size of updated (deleted) dataset is 15,000 records (these parameters are
abbreviated as T5.I2.D100K-15K+15K, the support thresholds are varied
between 1.4% and 1.9% meaning that for a support level of 1.4%, an itemset
has to appear in 1400 (fourteen hundred) or more transactions to be taken
as a large itemset. An experimental results is shown in Table 2.

Table 2. CPU Execution Times for Dataset: T5.I2.D100K-15K+15K at Different Sup-
ports

Algorithms CPU Time (in secs) at Supports of
1.4 1.5 1.6 1.7 1.8 1.9

Apriori 13451.99 3716.02 2041.77 1268.18 856.88 625.77
FUP2 7807.21 2208.75 954.10 596.04 408.66 312.89
MAAP 4955.29 1608.67 700.98 436.68 302.82 235.61

From the observation of the experimental result, we can see that (i) as the
size of the support increases, the execution time of all the algorithms (FUP2
and MAAP) decreases because of decrease in the total number of candi-
date and large itemsets during each iteration. (ii) for the same support, the
execution time of MAAP algorithm is less than that of FUP2 and Apriori
algorithm. (iii) as the size of support increases, the difference in execution
times of MAAP algorithm and FUP2 diminishes. This is because as the
support increases, the total number of large itemsets and candidate item-
sets decreases reducing the need to spend time searching huge database for
support of large itemsets.

– Experiment 2: Given a fixed size dataset (including inserted and deleted
datasets) and a fixed support, we test CPU execution times when different
numbers of old large itemsets are allowed to change in the new database.
Since the number of large itemsets changed may affect CPU time of MAAP
algorithm, this experiment is conducted to observe the performance of both
MAAP and FUP2 algorithms. The dataset used for this experiment is the
same as for experiment 1 above except that the size of updated (inserted)
database is 1.5K records, the size of updated (deleted) database is 1.5K
records (these parameters are abbreviated as T5.I2.D100K-1.5K+1.5K). As-
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sume x represents the percentage of old large itemsets that changed in the
new database and x is varied between 10% and 50%, the result of this ex-
periment is shown in Table 3.

Table 3. CPU Execution Times for Dataset: T5.I2.D10K-1.5K+1.5K at Different Per-
centage Changes in Old Large Itemsets

Algorithms Percentage changes in Old Large Itemsets
(times in secs) 12.3 25.1 37.8 49.6
FUP2 1426.26 1567.33 1623.52 1765.59
MAAP 1059.71 1348.54 1546.93 1837.32

It can be concluded that (i) as the change of old large itemsets increases,
the CPU execution time of MAAP and FUP2 algorithms increase because of
increase in the total number of large itemsets that need to be computed. (ii)
as the change of old large itemsets increases, the difference in CPU execution
times between MAAP and FUP2 algorithms decreases, when the change of
old large itemsets is around 45%, CPU execution times for MAAP algorithm
is higher than that of FUP2 algorithm. The reason is that if the percentage
change in old large itemsets is over 45%, MAAP algorithm will test many
large itemsets that are no longer large in the new database, incurring the
overhead of CPU computation time for obtaining their support. In such
circumstances, it is more beneficial to start computing large itemsets from
level 1 and upward as FUP2 would do.

5 Conclusions and Future Work

This paper presents a new algorithm MAAP, for incrementally maintaining asso-
ciation rules in the updated database. This algorithm applies an Apriori property
to the set of large itemsets in the old database, generates some parts of the lower
level large itemsets in the new database using all previous old large itemsets that
are confirmed to be still large in the new database. Thus, it eliminates the need
to compute parts of lower level large itemsets and saves rule maintenance time
by reducing the number of times the database is scanned. It achieves more ben-
efit when high level large itemsets can be used to generate a lot of low level large
itemsets in the first step of applying the Apriori property.

Future work may consider at what kth highest level it is most beneficial to
start applying this technique. The highest level that yields most low level large
itemsets when the Apriori property is applied is the needed level. For example,
if the total number of large itemsets in L′

3 is 5, and the total number of large
itemsets in L′

4 is 1, comparing numbers 3,5 with 4, 1, may tell us to begin from
L′

3, since L′
3 may cover more lower level large itemsets than L′

4.
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Abstract. Term extraction is an important problem in natural language proc-
essing. In this paper, we propose a language independent statistical corpus-
based term extraction algorithm. In previous approaches, evaluation has been
subjective, at best relying on a lexicographer’s judgement. We evaluate the
quality of our term extractor by assessing its predictiveness on an unseen corpus
using perplexity. Second, we evaluate the precision and recall of our extractor
by comparing the Chinese words in a segmented corpus with the words ex-
tracted by our system.

1 Introduction

 Term extraction is an important problem in natural language processing. The goal is
to extract sets of words with exact meaning in a collection of text. Several linguists
have argued that the base semantic unit of language are these terms.  Applications of
automatic term extraction include machine translation, automatic indexing, building
lexical knowledge bases, and information retrieval.

In previous systems, evaluation has relied mostly on human assessments of the
quality of extracted terms. This is problematic since experts often disagree on the
correctness of a term list for a corpus. Consequently, it is difficult to replicate the
evaluation procedure to compare different systems. Furthermore, experts normally
evaluate only a few hundred terms. These tend to be the highest-ranking ones, those
most easily recognizable by lexicographers. A term extraction tool that assists humans
would be more useful if it were able to extract those terms less obvious to humans.
This is difficult to evaluate.

 In this paper, we present a language independent statistical corpus-based term ex-
traction algorithm. First, we collect bigram frequencies from a corpus and extract
two-word candidates. After collecting features for each two-word candidate, we use
mutual information and log-likelihood ratios to extend them to multi-word terms. We
experiment with both English and Chinese corpora. Using perplexity, we quantify the
definition of a term and we obtain a comparative evaluation of term extraction algo-
rithms. Furthermore, we evaluate the precision and recall of our term extractor by
comparing the words in a segmented Chinese corpus with the words extracted by our
system. Our evaluation methodology circumvents the problems encountered by previ-
ously used human evaluations. It also provides a basis for comparing term extraction
systems.
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2 Previous Work

 There have been several approaches to automatic term extraction mostly for technical
terminology and noun phrases. Many successful algorithms are statistical corpus-
based approaches [2], [5], [10].

 Several term extraction tools have been developed. Dagan and Church [4] pro-
posed a tool that assists terminologists in identifying and translating technical terms.
Smadja [19] developed a lexicographic tool, Xtract, which extracts collocations from
English. Fung [11] later extended this model to extract words from Chinese corpora.
The latter work was the first to attempt an automatic evaluation of term extraction.
Previous methods used human experts to evaluate their extracted term lists. Fung first
uses a tagger to retrieve Chinese words. Then, the extraction system is evaluated by
counting the number of these words retrieved by the term extractor.

 More recently, Eklund and Wille [8] describe an algorithm that utilizes discourse
theory to extract terms from single-subject texts. Hybrid approaches combining sta-
tistical techniques with linguistic knowledge (syntax and morphology) have also
emerged [14], [17], [18].

3 Term Extraction Algorithm

 Our term extractor is a two-phase statistical corpus-based algorithm that extracts
multi-word terms from corpora of any language (we experiment with English and
Chinese corpora in this paper).

 Our algorithm uses two metrics to measure the information between terms (or
words): mutual-information (mi) and log-likelihood (logL) [7]. Mutual information is
defined as:

 ( ) ( )
( ) ( )yPxP
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 where x and y are words or terms. Mutual information is highest when all occurrences
of x and y are adjacent to each other and deteriorates with low frequency counts. To
alleviate this problem, we use a second measure, log-likelihood, which is more robust
to low frequency events. Let C(x, y) be the frequency of two terms, x and y, occurring
adjacent in some corpus (where the asterix (*) represents a wildcard). Then, the log-
likelihood ratio of x and y is defined as:
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 where k1 = C(x, y), n1 = C(x, *), k2 = C(Ø x, y), n2 = C(Ø x, *),   and:
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nput: A corpus L in any language.

tep 1: Collect bigram frequencies for L in a proximity database DB.

tep 2: For all 4-grams w x y z in L, remove one count for x y in DB if
-likelihood ratio is highest when all occurrences of x and y are adjacent to
 (as in mutual information). However, the ratio is also high for two frequent
are rarely adjacent. For example, the word pair (the, the) has a very high

ood ratio in English even though it rarely occurs (mostly as a typographical

come the shortcomings of mutual information and log-likelihood, we pro-
rid metric. The score S for a pair (x, y) is defined as:

( ) ( ) ( )
î
í
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=
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minMutInfoyxmiifyxlogL
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,,
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 the mutual information as an initial filter to eliminate term pairs such as
elow, we describe each phase of our term extraction algorithm.

didate Extraction

utlines the first phase of our term extraction algorithm. It extracts a list of
candidate terms from a corpus of any language. Optimally, this list contains
rd terms as well as fragments of all multi-word terms.
1, we construct a proximity database consisting of the frequency counts for
ent pair of words in the corpus [16].
pose of Step 2 is to eliminate frequency counts for those adjacent words
parated by a phrasal (word) boundary [1], [20]. A phrasal boundary sepa-
s that are not part of a same term. Given a 4-gram (w, x, y, z), we assume
phrasal boundary between x and y if mi(x, y) < mi(w, x) -  k or mi(x, y) <
, for some fixed constant k.
erforms the selection of two-word candidates. An adjacent pair of words is
its frequency and score surpasses a fixed threshold. We experimentally set
to 3, minLogL to 5, and minMutInfo to 2.5.

- mi(x, y) < mi(w, x) -  k or
- mi(x, y) < mi(y, z) -  k.

tep 3: For all entries (x, y) in DB, add (x, y) to a list T if:
- C(x, y) > minCount
- S(x, y) > minLogL

utput: The list T of candidate multi-word terms.

Fig. 1. Candidate extraction algorithm.



 39

3.

 T
ba
ex
B
ex

3.
 F

fi
w
k 
w
w

co

in
do

sm
oc
an

I

S

S

S

O

A Statistical Corpus-Based Term Extractor        

nput: A list T of two-word candidates for a corpus L in any language and a proximity
database DB consisting of bigram frequencies for L.

tep 1: Accumulate features for candidate terms
For each candidate c in T

For each w1 w2 … c … w2k-1 w2k in L
Add all possible substrings involving c in DB.

tep 2: Update the proximity database
2 Multi-word Term Extraction

he input to the second phase of the term extraction algorithm is the proximity data-
se and the list of two-word candidates extracted from phase one. The goal is to
tend each candidate to multi-word terms (two words or more up to a fixed size).

elow we describe the multi-word term extraction algorithm in two parts: the main
traction driver and the recursive term extension algorithm.

2.1 Extraction Driver
igure 2 outlines the main driver for the multi-word term extraction algorithm.

 The input proximity database consists of the bigram frequencies of a corpus. In the
rst step of the algorithm, we update this database with new features. Given a two-
ord candidate c, we consider all possible expansions e of c containing no more than
words on each side. We then count the frequency between e and all its adjacent
ords. Later, in our expansion algorithm, we will use these frequencies to determine
hether e should expand to any of these adjacent words.
 For example, suppose k = 2 and we have a candidate drop-down that occurred in a
rpus in the following contexts:

� …from the drop-down list in…
� …Network Logon drop-down list when…

 The features extracted for the first context are: (drop down, list), (drop down list,
), (the, drop down), (the drop down, list), (the drop down list, in), (from, the drop
wn), (from the drop down, list), and (from the drop down list, in).
 In Step 2 of the algorithm, we remove those features that occurred only a fixed
all number of times. In our experiments, we found that most extracted features
curred only once. This step significantly reduces the size of the proximity database
d removes spurious features.
 

Remove each entry in DB that has frequency < minFreq.

tep 3: Extend two-word candidates into an initially empty list E
For each candidate c in T

extend(c, E, DB) – see Figure 3
if most occurrences of c in the corpus have not been extended then add c to E.

utput: The list E of extracted multi-word terms.

Fig. 2. Multi-word term extraction algorithm.
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Input: A multi-word term c to extend into a list E and a proximity database DB consisting
of bigram frequencies of a corpus L and features extracted from Step 2 of Figure 2.
Let c1 and c2 be the terms merged to create c.

Step 1: For each word w adjacent to c in L
If S(w, c) > S(c1, c2) -  k, add w to a list G sorted in decreasing order of S(w, c).

Step 2: For each possible extension g in G
 Step 3 of Figure 2 uses the added features in the proximity database to extend can-
date terms (see the next section for a description of the extension algorithm). We are
en left only with deciding whether or not a two-word candidate c is a term. We
rify this by obtaining the ratio of the frequencies of extended terms containing c as
substring to the frequency of c. If it is large, then this indicates that most occur-
nces of c in the corpus were also occurrences of an extended phrase of c. So, we
ly extract c if the ratio is small.

2.2 Term Extension Algorithm
igure 3 describes the recursive term extension algorithm. The goal is to extend an
put term c using the updated proximity database from Section 3.2.1.
 In the first step of the algorithm, we build a sorted list G of all good extensions of c

he best extensions are first in the list). Let (c1, c2) be the two terms that compose c.
or a two-word candidate, the first and second words are c1 and c2, respectively. A
ord w is a good extension of c if S(w, c) > S(c1, c2) -  k, for some fixed threshold k.
he frequency counts required to compute S are stored in the proximity database. The
st G then contains all 1-word extensions from c. But, these might still be term frag-
ents.
 Step 2 is the recursive step of the algorithm. We loop through each good extension

in G. Let p be the extension of c with g (i.e. either c g or g c). Before processing p,
e require that p is not a substring of an extracted term (i.e. g has not been previously

Let p be the extended phrase (c g) or (g c)
If p is not a substring of a term in E

If (not extend(p) and filter(p)) add p to E

Step 3: If any p’s were extended or added to E then return true, otherwise return false.

Output: The list of extracted multi-word terms is appended to E and a boolean value indi-
cating whether or not at least one extension was made is returned.

Fig. 3. Recursive algorithm that extends a given multi-word term to larger terms.

able 1. 10-fold cross-validation evaluation of the perplexity of our term extraction system.

CORPUS UNIGRAM PERPLEXITY SP PERPLEXITY SP WITH MUT-INFO

UNTS 647.01 523.93 547.94

NAG 706.54 605.59 654.94
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extended). For example, suppose that Jones Computer and Computer Publishing are
both two-word candidates and that the former is extended to Jones Computer Pub-
lishing. Now, suppose that we are attempting to extend Computer Publishing with g =
Jones. Since Jones Computer Publishing has already been extracted, we do not want
to extend Computer Publishing with g = Jones.

 If p is not a substring of an extracted phrase, then we try to extend p recursively. If
p is successfully extended to an even larger term, then we do not add p to E. How-
ever, if p is not extended then p is classified as a term and added to E.

 So far, the algorithm is purely statistical. However, the final part of Step 2 provides
the option of using linguistic knowledge to filter the extracted terms. For example, if
the statistical processor treats punctuation marks as words, it is probable that some
extended features will contain punctuation marks. This filter allows for easy removal
of such erroneous terms.

 The final step of the extension algorithm simply determines and returns whether or
not c was extracted in whole or in part as a term.

4 Experimental Results

 Below, we evaluate our term extractor using perplexity, precision and recall.

4.1 Perplexity

 Perplexity measures how well a model predicts some data. In natural language, we
often use perplexity to compare the predictiveness of different language models over
a corpus. Let W be a random variable describing words with an unknown probability
mass function p(w) and let C(w) be the frequency count of a word or term w in a lan-
guage. Also, let m(w) = C(w) / C(*) be an approximation of p(w) (a unigram model),
where * represents a wildcard. Since W is stationary and ergodic, the cross-entropy of
W, H(p, m), is defined as [3]:

 ( )n
n

wwwwm
n

mpH ...log
1

lim),( 3212-=
¥fi

(5)

 Cross-entropy gives us an upper bound on the true entropy of W, H(p, m) ‡  H(W).
Standard unigram models approximate the probability of a sequence of words by
computing the product of the word probabilities (i.e. assume words are independent).
We augment this model to also describe terms by computing the probability of a se-
quence of words as the joint probability of the terms and words in the sequence.

 Using our term extractor, we extract a list of terms from a training corpus. To
compute m, we require the frequency counts of all words and terms. We obtain these
frequencies by counting all terms and words that are not terms in the training corpus.
Using a testing corpus L with a finite number of words n, we approximate the cross-
entropy H(p, m) from formula (5) with:
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 where t is a term or a word in L. The better the list of extracted terms, the more pre-
dictive the model will be of the testing corpus (i.e. the lower H(p, m) will be). Hence,
this model can serve to perform a comparative evaluation of different term extraction
algorithms. A related measure, perplexity, is defined as:

 ),(2),( mpHmpperplexity = (7)

4.1.1 Analysis
 We used two corpora for evaluating the perplexity of our system: UNTS [12] con-
sisting of 439,053 words and NAG [15] consisting of 117,582 words. We divided
each corpus into 10 equal parts and performed ten-fold cross validation to test our
system’s perplexity. We used Witten-Bell discounting [21] to estimate the probability
of unseen events. Table 1 presents a comparison between our system’s perplexity (SP)
and the perplexity of a unigram model (i.e. with an empty term list). On both corpora,
the term list generated by our system significantly reduces perplexity.

 We also experimented with a different expansion function for our term extraction
algorithm. Instead of using the log-likelihood ratio as in Step 1 of the algorithm pre-
sented in Figure 3, we used the mutual information metric. The third column of Table
1 shows the result. This metric performs much worse on the smaller NAG corpus.
This supports the claim from Section 3 that mutual information deteriorates with
sparse data.

Finally, we divided the UNTS corpus in two equal parts (even vs. odd numbered
chapters) and used one for training and the other for testing. We evaluated the effect
that specific phrases had on the perplexity of our system. Figure 4 shows the variation
in perplexity when each phrase extracted by our system is individually extracted. The
horizontal line represents the perplexity of the standard unigram model on this test

Term Effect on Perplexity

645

650

655

660

665

1 41 81 121 161 201 241 281

Ranked Terms by our Extractor

Fig. 4. The effect on perplexity when each ranked term is added individually. The
left-most points represent the highest ranked terms.
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corpus, which is 664.1. The highest spike is caused by the term boot record. This is
because almost all of its occurrences were in chapters 9 and 29 (part of the training
corpus). Finally, we manually created a list of 5 bad terms from a training corpus for
UNTS. As expected the perplexity on the test set increased to 664.3.

4.2 Precision and Recall

 Making use of a segmented Chinese corpus, we compute the precision and recall of
our term extractor. Chinese text does not contain word boundaries and most Chinese
words are one or two characters long. In fact, since Chinese characters carry a lot
more information than English characters, the average length of a Chinese word con-
tains 1.533 characters [12].

 The task of identifying words in Chinese text is very similar to identifying phrasal
words in English if one treats each Chinese character as a word. In fact, our term
extractor can be applied straightforwardly to Chinese text.

 Our extractor can be evaluated as retrieving multi-character words from a seg-
mented Chinese corpus. The target words for the retrieval task are multi-character
words in the segmented corpus with a frequency above a certain threshold. The per-
centage of words in the target set that are extracted by the term extractor is the recall.
We measure the precision of the extractor by computing the percentage of the ex-
tracted words among the words in the segmented corpus (including those with fre-
quency lower than the threshold).

4.2.1 Analysis
 The test data is a cleaned up version of a segmented Chinese corpus [12]. It contains
about 10MB of Chinese news text. We extracted 10,268 words from the corpus.
Among them, 6,541 are words in the segmented corpus. A further 1,096 of our ex-
tracted words are found in HowNet, a Chinese lexical knowledge base [6]. This gives
an overall precision of 74.4% for our extraction algorithm. This is a significant im-
provement over the precision of 59.3% given by Fung’s extractor [11]. We also
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Fig. 5. The precision of the top-k words extracted by our term extractor.
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evaluated the precision of the top-k extracted words sorted by their log-likelihood
ratio. Figure 5 shows the result.

 Since the segmented corpus is generated automatically and is only lightly cleaned
up, it contains many errors. The segmentor tends to break words aggressively. Upon
inspection of the remaining 2,631 words not found in the corpus nor HowNet, we
found many correct terms such as those shown in Table 2. Many of these words are
names of persons and organizations, which are not readily found in lexicons such as
HowNet.

 There are 8,582 words in the segmented corpus that occurred at least 10 times. We
extracted 5,349 of these, which gives an overall recall of 62.3%. Again, this is a sig-
nificant improvement over the recall of 14% given by Fung’s extractor [11]. Figure 6
shows the result of evaluating recall for sets with a fixed minimum frequency.

5 Conclusion and Future Work

 In this paper, we presented a language independent statistical corpus-based term ex-
tractor. It improved the perplexity of a testing corpus by 16-23% and achieved 74.4%
precision and 62.3% recall. Of the top 1000 terms retrieved by our system, we
achieved 92.6% precision. Also, we recalled 89.1% of the terms that occurred at least
200 times in a corpus.

Our evaluation methodology provides a significant improvement over the current
dependence on human evaluators for evaluating systems. It allows for easy compari-
son of extraction systems and it measures the precision and recall of a system at dif-
ferent word frequency levels.

A promising extension to our algorithm is to apply similar methods to non-linear
structures such as dependency structures of sentences. The result would be colloca-
tional dependency structures.

Recall vs. Minimum Word Frequency
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Fig. 6. The recall of our term extractor on words in the corpus that
occurred a minimum number of times.
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Abstract. Our computer reasoning system uses a set of memory net-
works, a spatial simulator and an object-oriented hierarchy of body-based
spatial metaphors to reason about abstract concepts. The metaphor hi-
erarchy is based on the hierarchical nature of embodied actions, and the
simulator is designed to model these actions. The system maps its input
to a set of spatial metaphors at the most detailed level possible, and then
uses modeling of the metaphorical concepts to reason about the original
input.

1 Introduction

This paper describes a system that uses body-based metaphor interpretation
and the hierarchical nature of embodied metaphor to perform metaphor-based
reasoning on abstract concepts. The system, named MIND (Metaphor-based In-
terpretation and Natural Discourse), is built from (a) a spatial simulator where
physical events are modeled and body-based feelings are generated; (b) a set
of integrated networks representing a metaphor hierarchy, a semantic network,
a feeling based lexicon, and feelings and imagery from remembered scenes and
episodes; and (c) a pattern and sequence matcher. MIND creates feeling-based
mappings of events into its restricted set of metaphors producing a mental
image that can be manipulated in the spatial processor. Objects (nouns), ac-
tions (verbs), and relationships (prepositions) in the actual event are mapped to
metaphorical prototypes. Using an image created from the prototypes, MIND
can expand upon the spatial interpretation finding other relationships and pos-
sible continuations. MIND also models the spatial mappings of events or actions.
Using this modeling of events, MIND can determine possible continuations of the
metaphorical scene that can be mapped back into the original domain. MIND
also determines satisfaction or failure of expectations emanating from the phys-
ical imagery, and uses these determinations to perform deductions that can also
be mapped back into the domain of the original event.

Our approach stemmed from studies of how the brain controls movement
without being overwhelmed by the many degrees of freedom of the body (Greene
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[1971], [1972], [1982]), which led us to study an object-oriented organization of
movement (Solomon [1989]; Greene and Solomon [1991]). We also developed our
first model of object-oriented action in general (Greene [1987], [1988]), having a
general class DO-SOMETHING (with methods such as START and STOP), a
subclass DO-SOMETHING-QUANTITATIVE (with methods for concepts such
as such as MORE and LESS, and for adjustment strategies), in turn having
a subclass DO-SOMETHING-WITH-EFFORT (for ideas such as TRY, PRE-
VENT, and OVERCOME). Combining these models provided connections be-
tween movement and language. Thus, we do not focus on the general use of
metaphorical natural language, but rather on metaphorlike schemas used as
ideas that organize families of other ideas, and as feeling-based guides and aids
(Damasio [1999]) to reasoning and making choices.

2 The Model of Mind

2.1 Reasoning

MIND processes inputs and attempts to create a spatial portrayal of appropri-
ate metaphors. Processing the statement “I will leave that assertion out of the
argument,” MIND first determines that the base of its interpretation is the out
relationship, that is, its top level memory of an out situation. MIND’s memory
of outside consists of a container, and a set of feelings. The feelings serve a dual
purpose. By being matched against a stream of input feelings, they let MIND
know when it encounters an out situation. They also tell MIND what a speaker
is trying to convey when the speaker uses the word “out.”

After recognizing that the reference is to an out situation, MIND maps the
entities in the input to the entities in the memory of out , which includes an object ,
a container , and an outside. MIND matches up the physical entities and then the
feeling set that is appropriate for what is being described. Not all the objects in
the memory are mapped to entities in the input. In fact, no mappings are required
at all. Mappings merely give the ability to draw more domain specific inferences;
they are not required for MIND to process the input. MIND can reason using
only the high level metaphorical forms stored in the memory. In this case MIND,
knowing nothing about the situation being described except what it is told and
what it knows via the fact that it is an outside situation, proceeds to form a
spatial perception by creating the appropriate mental imagery.

MIND starts to use its prototypical image of a container to represent the
argument. MIND then deduces that existence of an unmentioned “conclusion”
or point to the argument, and that this unmentioned object is in fact to be the
focal object of the imagery produced. The key to determining the existence of an
unmentioned conclusion is in how MIND creates its imagery. Before settling on
using as a representation an image mentioned in a memory, MIND constantly at-
tempts to find more specific image classifications by examining new information
provided in the input and specific knowledge about objects mapped to general
categories.
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When MIND processes “...the assertion out of the argument,” its first choice
of an image for argument is that of a container. Before settling on this image,
MIND checks whether it knows anything about arguments that will allow it to
use a more detailed image.

MIND knows that an argument has implications. If it knows nothing else
(and at this point it in fact knows little else about arguments except a few
inherited attributes), MIND knows that the existence of an argument implies the
existence of a conclusion that is the focus of the argument. After processing this
information, MIND has knowledge of the existence of an entity not mentioned in
the input. MIND then checks its memory of the current mapping of argument,
a container, to see if a more detailed type of container can incorporate this new
information. In fact, a more detailed type of container is the container-with-
contents.

This entry in the memory contains very little information. All it states, is that
a container with content has a focal object that must be able to be imparted
physical characteristics and that there is a remembered image of a container
with content. The actual physical relationship of the content to the container
is implicitly found in the image. Although the imagery MIND creates will now
have another object, which will, in fact, become the focal object, there is no
mention of this object in the text, and MIND has no situational entity to which
it can map this object.

There is a major difference between the manner in which MIND determines
where to draw the conclusion in the image, and how it determines where to draw
the assertion. The location of the conclusion is predetermined by a remembered
image of a container with content. Thus, MIND places the conclusion in the
location of the content in the memorized image. It is important to remember
that its existence and location in the memorized images inherently represent
all that MIND needs to know, and their presence in the mental imagery will
affect MIND’s reasoning process. The location of the spatial representation of
the conclusion is determined from the input. The assertion is said to be “out of
the argument.” MIND knows where to place the assertion because it knows the
spatial interpretation of “out.” MIND knows what “out” feels like, and what are
the elements required to have “out.” MIND also knows what “out” looks like,
and how to create an image of “out” using objects it can portray in a mental
space.

MIND also has some knowledge about the assertion that is not mentioned
in the input. MIND knows that assertions are considered to be able to exert
a force in contexts in which they are mentioned. MIND therefore refines the
image used to represent the assertion from an image of an object to an image
of an object with a force. An object with a force exerts, by default, a force
that expands in all directions, and causes an expectation that this force will,
in some way, affect the focal object of the context in which it is mentioned.
MIND, therefore, not only places a representation of the assertion in space, but
also places a representation of a force. MIND’s spatial processor has a sufficient
understanding of the laws of physics to know how a force propagates and what
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happens when it encounters another entity. As the scenario is played out in the
processor, feelings are generated, including a sense of expectation, satisfaction,
or failure.

2.2 Finding Expected Continuations

In our examples, once MIND determines a spatial understanding of a situation, it
can also find expected and/or possible continuations by processing remembered
sequences of feelings and events at the level of the memories it is using to portray
the current situation. A small example will demonstrate this point.

MIND finds a probable antecedent (presequence) for events and scenarios
with which it is presented. MIND then uses the antecedent as its own input,
causing the generation of the same results as if this sequence of events were
actually fed into the system as input. MIND has the ability to reinterpret its
own output as input and feed it back into itself. Using this new “input,” MIND
determines what is being described. MIND then determines a set of possible
continuations by determining which memorized sequences actually begin with
the sequence of feelings generated in the processor by processing the supplied
information along with the antecedent MIND has assumed.

2.3 System Components

The model of MIND consists of a set of integrated networks functioning as the
following five components: a semantic network, a feeling based lexicon (Berkowitz
and Greene [2000]), a memory network, a spatial processor, and a memory
matcher (Berkowitz [2000]). The following will describe how the semantic net-
work fits into the overall component structure of MIND. The semantic network
consists of links between the nodes in the networks. Each link has an activation
coefficient quantifying the relative strength of the relationship between the two
connected nodes. Nodes in the semantic network can be activated, causing the
activation to propagate. The resultant set of activated nodes and their corre-
sponding activation levels can then be used as an input set to other components
in the system.

“On,” “out,” “inside,” “stumble,” and “fall” are lexemes, connected to nodes
of the semantic net via links with varying activation levels. When a lexeme is
activated, its activation is multiplied by the activation levels of the links along
which it travels. Since the activation levels are slightly less than 1.0, the acti-
vation will slowly dissipate as it spreads throughout the network until it finally
drops below a threshold value and propagation stops. Only a subset of the nodes
in the networks are actually linked into the semantic network. Each of the con-
nected nodes represents either, one of the basic feelings that are used to create
the entries in the feeling-based lexicon, or a named aggregate feeling representing
a combination of basic feelings.

The feeling-based lexicon provides direct links between lexemes and nodes
in the semantic network. It is via the lexicon that complete feeling sets can be
created from external textual information. Each entry in the lexicon is linked to
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its direct entry points in the semantic network. These links make up its basic
feeling-based definition. Activation of a lexical entry causes activation of its
direct entry points, that in turn causes propagation of the activation throughout
the network, yielding a complete feeling set. Although it may appear as though
the lexicon exists as a separate entity, and indeed in its earliest incarnations it
was one, it currently exists as another subset of the overall memory network.
The lexicon represents those nodes in the network to which a natural language
word or phrase can be associated. The nodes form the basic building block of
recognizable natural language sequences.

The memory network forms the linkage between the components of the sys-
tem. It is actually not a single network, but the collection of interconnected
networks that share a common node structure but have different sets of links.
The component networks are not subnetworks; they are not severable, and any
attempt to separate them will necessarily result in duplicated data. They repre-
sent different perspectives on the same data, represented by the different sets of
links forming different organizational structures. The metaphor network views
the nodes as a hierarchical structure representing levels of abstractions, while
the semantic network has no form of hierarchical structure at all. This network
structure allows the various components of MIND to look at exactly the same
data but to interpret it in different ways. The node for “in” can be part of
the feeling-based lexicon representing a lexeme. To the semantic network, the
same node is linked via activation coefficients to the rest of the semantic net-
work, allowing propagated activations. To the spatial processor, the same node
represents the prototypical spatial representation of “in.”

The metaphor hierarchy is based upon the levels of abstraction that can be
used in perceiving situations. The most generalized perceptions form the top
of the metaphor hierarchy. Lower nodes in the tree represent metaphors with
added detail. This added detail is not domain detail, but spatial detail that
can be exploited should it be alluded to, or should there be domain-specific
detail to which it can be mapped. The top level abstraction for all verbs in the
hierarchy is the metaphor named Do, representing movement of an actor along
a path (Greene [1987,1988]). The basic abstraction Do would be a superclass
of the representation for “I think.” Although represented by a path, it lacks
landmarks required for measurement of distance and, therefore, proportions.
Without any additional information, one can not measure how much one has
“thought,” or divide thinking into units—how many thinks in a thought? Thus,
reasoning is limited to a sense of progress or forward motion but is prevented
from quantifying that motion. The first level of specialization is Do-Quantifiable,
representing acts in which the amount of the act performed can be measured and
divided into discrete countable units. For example, in the statement “I run,” one
can quantify how far I have run. In this case, the only available landmarks are
current and previous positions. One can measure in terms of units, the distance
that has been traveled. The next level of specialization is Do-with-Objective.
Here, there is a goal or objective to be reached; not only can the amount of
the act performed be quantified, but so can the distance to the goal. Given a
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current position on a path and a goal, one can measure the distance between
them, determining how much of the act needs to be performed, and measuring
progress in units not just based on a feeling of unquantifiable forward motion.

The metaphor hierarchy exists as its own network within the memory net-
work. It links those nodes in the memory network that represent metaphorical
prototypes. These prototypes contain imagery allowing them to be recreated as
mental images in the spatial processor leading to the ability to perform spatial
reasoning. The links that make up this part of the memory form a structure
representing levels of abstraction in metaphorical detail.

MIND’s ability to produce spatial abstractions and mappings from natural
language derives, in part, from the lexical sequence network. As it reads input, it
attempts to turn the text into a specific instance of a known generalized memory.
It utilizes the semantic network to derive feelings and feeling sequences. Utilizing
these feelings, it determines an appropriate metaphorical prototype to be used to
create a feeling-based abstraction of the text. Based on the metaphorical abstrac-
tion, it determines which mappings can be made for elements of the abstraction,
and which elements of the abstraction will remain in their generalized form. It
constantly attempts to create mappings for generalized forms utilizing new in-
formation from the text and searching the memory for implied mappings based
on elements of the text. It also maintains a record of the activated memories.

The lexical sequence network is made up of ordered sequences of high level
lexical classifications linked to memories of generalized situations to which the
sequences can be mapped. When a match is made between a segment of text
and a sequence, the feelings activated in the semantic network, the number of
mappings that can be made, and the inferences that can be drawn, all serve
to determine the correct metaphorical prototype, and the level of metaphorical
abstraction from the metaphor tree that will be used as the spatial represen-
tation for reasoning. The sequences are made up of the highest possible lexical
classifications in order to allow maximum freedom in matching actual sequences
to those in the network. Where possible, general categories such as verb or noun
are used to designate what form of lexical entry should appear at a given point
in a sequence. At other times, a specific lexeme may be the clue to matching
the rest of the sequence and the mapping of entities. In this case, the sequence
will contain the needed lexeme at the correct position. Completely unrecognized
elements of an actual sequence that can not be mapped into the network are
ignored, in the hope that utilizing those elements that are recognized, will yield
a correct interpretation.

Lexical sequences can be as short as “noun verb,” matching any noun fol-
lowed by a verb. This basic type of sequence will be associated with the highest
level abstractions since, without additional information, no mappings can be cre-
ated beyond the existence of a noun mapped to an object and a verb mapped to
“Do.” More complex sequences such as “noun verb toward noun” would match
an actor performing an act toward a goal or objective. All components of MIND
are designed to support future handling of much more complex lexical sequences.
Sentences such as “I ran toward Sara inside the room under the broken ceiling”
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could be matched by creating spatial representation for all of the clauses, and
combining them as subspaces represented as entities in a meta-representation
of the entire sequence. Such subspace/meta-space representation is supported
although the current implementation does not exploit it. The sequence recog-
nizer is also designed to recognize subsequences and combine them into larger
sequences of sequences.

As a feeling based reasoning system, MIND needs to be able to match con-
cepts not only to textual clues from discourse, but also to feelings generated
either by the system’s interaction with its environment or as a result of manipu-
lations in its spatial processor. If MIND is trapped in a container, it must realize
this via a sequence of feelings common to trapped situations. It does not deter-
mine trapped via a set of rules defining tests for trapped , nor even actively test
to see if it is trapped. The sequence matcher is watching the generated feelings,
and when that sequence indicative of trapped is noticed, the appropriate nodes
in the memory network are triggered, causing MIND to know it is trapped. The
feeling sequence network is made up of ordered collections of feelings linked to an
aggregate feeling or to a concept. In MIND, the aggregate feeling stuck can be
triggered by matching the following sequence of feelings: internal-force counter-
force disappointment null-movement. The feeling of stuck represents a situation
in which the application of force does not yield change. This is more primitive
than the feeling of blocked , as blocked implies the existence of some obstacle or
impediment. One can be stuck for any number of reasons, including being held
back or a lack of adequate traction.

The scenario blocked is typified by the sequence: internal-force counterforce
obstructed stuck pressed. If such a sequence is recognized then it can be called
“blocked,” and the word “blocked” indicates the existence of these feelings. The
possible responses, in general categorical form, for blocked are try-harder, go-
around, and give-up. The feeling sequence network utilizes the same sequence
matcher as the lexical sequence network allowing for equally complex sequences.

The memory sequence network combines sets of memory nodes into a se-
quence constituting a complete memory. The sequences constitute a “script” or
“movie” representing a remembered flow of events (Greene and Chien [1993]).
These sequences would allow MIND to have presuppositions about what pre-
ceded a recognized scenario and what might follow it. These sequences would
also allow MIND to conceive rational responses to situations. MIND’s first re-
sponse, based on a memory sequence, to feeling stuck is to try harder, by applying
increased force. This response is not an arbitrary phrase produced by rules. It is
a representation of memories in the memory network that allow MIND not only
to know that trying harder is an appropriate response, but also to reason about
trying harder. It can remember through added sequences what might happen
when it tries harder. It would model trying harder in its spatial processor and
come up with possible outcomes without reliance on remembered events, but
only on its spatial abstraction of the current scenario and associated feelings.

Using MIND as a reasoning engine and building on our prior systems we are
now enlarging the feeling-based lexicon and developing control structures and
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choice strategies for reasoning in real-world scenarios. Although we currently
use symbolic techniques, we are researching the application of various forms of
reduced representations of sequences proposed in the connectionist literature
as representations of bodily “feelings” or “somatic markers” (Damasio [1999])
associated with our “scripts” or “movies” in MIND’s memory, and their use
in guiding choices that would then be confirmed and refined through symbolic
reasoning.

3 Origins of This Work

Relying on our previous work developing a conceptual hierarchy for action and
the works of Talmy ([1985]), Lakoff ([1987]), Johnson ([1987]), and Langacker
([1987], [1991]) who developed an extensive theory of how metaphor based on
bodily feelings of space and force organizes our ideas and speech, Greene and
Chien ([1993]) presented an unsupervised neural network that classified clusters
of feelings generated when a simple simulated creature collided with a physi-
cal obstacle, one class turning out to be the feelings at the moment of impact;
this paper speculated on mapping instances of abstractly “running into an ob-
stacle” into such a simulation, allowing retrieval of the fact that it had three
options, push hard, go around, or give up, to be converted by a suitable object-
oriented organization of domain knowledge into the particular forms of these
options appropriate to the current situation. We hoped that, through similar
feelings, abstract instances of body-based concepts might evoke concrete physi-
cal “scripts” of feeling clusters, that could be used as abstract “diagrams” of a
situation, from which useful information could be read. Kozak ([1994], [1995])
presented a program demonstrating this form of body-based abstraction but
without organizing actions into an object-oriented structure. Berkowitz ([2000])
presented the first fully integrated system, using feeling-based definitions, and
exploiting hierarchical metaphors.

4 Conclusion

Using a minimal set of body-based metaphors, MIND can demonstrate reason-
ing about abstract concepts such as leaving an assertion out of an argument.
Elevating reasoning to the level of body based metaphors can facilitate the gen-
eral application of basic reasoning mechanisms as well as modeling of human
communication through the use of simulated human reasoning.

We believe our work is compatible with other schools of work often regarded
as mutually incompatible. For example, reactive creatures, such as those of
Brooks, who avoids a cognitive level (Brooks [1990]), should be good substrates
for our body-based concepts. Furthermore, the physical knowledge in the mo-
tor schemas might be expected to fit nicely into both Pinker’s ([1989]) work on
verb structure, and the cognitive approach of Langacker([1987], [1991]), Lakoff
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([1987]), Johnson ([1987], Bailey ([1997]) and Narayanan ([1997]). The possibil-
ity of using our work as a method bringing together these currently separate
research pursuits creates fascinating prospects for future work.
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Abstract. This paper examines the performance of hill-climbing algo-
rithms on standard test problems for combinatorial auctions (CAs). On
single-unit CAs, deterministic hill-climbers are found to perform well,
and their performance can be improved significantly by randomizing
them and restarting them several times, or by using them collectively. For
some problems this good performance is shown to be no better than chan-
cel; on others it is due to a well-chosen scoring function. The paper draws
attention to the fact that multi-unit CAs have been studied widely un-
der a different name: multidimensional knapsack problems (MDKP). On
standard test problems for MDKP, one of the deterministic hill-climbers
generates solutions that are on average 99% of the best known solutions.

1 Introduction

Suppose there are three items for auction, X, Y, and Z, and three bidders, B1,
B2, and B3. B1 wants any one of the items and will pay $5, B2 wants two items
– X and one of Y or Z – and will pay $9, and B3 wants all three items and will
pay $12. In a normal auction items are sold one at a time. This suits buyers like
B1, but not B2 and B3: they cannot outbid B1 on every individual item they
require and stay within their budget. If X is auctioned first it will likely be won
by B1, and the seller’s revenue ($5) will be much worse than optimal ($14). In
a combinatorial auction (CA) each bid offers a price for a set of items (goods).
Thus, bidders can state their precise requirements and the seller can choose the
winners to optimize total revenue (sum of the selected bids’ prices).

Combinatorial auctions have been studied since at least 1982[32], when they
were proposed as a mechanism for selling time-slots at airports in order to per-
mit airlines to bid simultaneously for takeoff and landing time-slots for a given
flight. Fuelled by the FCC’s interest [13] and potential e-commerce [22] and other
applications [21,25], interest in combinatorial auctions has increased rapidly in
recent years. Among the many research issues raised, of main interest to AI is
the fact that “winner determination” - selecting the set of winning bids to opti-
mize revenue - is a challenging search problem. A recent survey of CA research
is given in [10]. Previous research has mainly focused on single-unit CAs, in
which there is exactly one copy of each item. Multi-unit CAs, in which there
can be any number of identical copies of each item, were introduced to the AI
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community in [27], which claimed the problem was new. One contribution of the
present paper is to point out that multi-unit CAs have been studied extensively
in the Operations Research literature, where they are called multidimensional
knapsack problems (MDKP).

This paper examines the performance of hill-climbing algorithms on standard
test problems for CAs. Theoretical analysis shows that greedy algorithms cannot
guarantee finding near-optimal solutions for winner determination [1,7,9,12,15,
17,18,29,33,34]. But these are mostly worst-case results, and in some cases apply
only to specific types of greedy algorithm and not to the type of hill-climbing
algorithm considered here. The main finding of this paper is that on the standard
CA and MDKP test sets, hill-climbers perform very well.

2 The Hill-Climbing Algorithms

The hill-climbing algorithms compared in this paper are identical except for the
criterion used to select which successor to move to. Search begins with the empty
set of bids and adds one bid at a time. Because bids have positive prices and
search can only add bids to the current bid-set, the total revenue for the current
bid-set must increase as search proceeds. Search terminates when a bid-set is
reached that has no successors. The solution reported is the bid-set seen during
search that maximizes revenue, which may be different than the local maximum
at which the search terminated.

Each different way of adding one bid to the current bid-set creates a potential
successor. A potential successor is eliminated if it is infeasible or if it can be
shown that no extension of it can possibly yield a greater revenue than the best
solution seen so far. For this purpose Sandholm & Suri’s “admissible heuristic”
(p.96, [35]) is used. Of the remaining successors the one that adds the bid with
the maximum “score” is selected to be the current bid-set and and the process
is repeated. Three different ways of computing a bid’s score are considered:
Price: the bid’s price
N2norm: the bid’s price divided by its “size”, where the size of bid j is the 2-
norm (square root of the sum of squares) of the fi,j , the fraction of the remaining
quantity of item i that bid j requires.
KO: the bid’s price divided by its “knockout cost”, where a bid’s knockout cost
is the sum of the prices of the available bids that are eliminated if this bid is
chosen. KO is the only novel scoring function; the others, and many variations
of them, have been studied previously [5,17,23,28,39,40].

Also included in the experiments is a form of randomized hill-climbing in
which, after pruning, a successor is chosen randomly: the probability of choosing
each successor is proportional to its score. Such hill-climbers can produce differ-
ent solutions each time they are run. In the experiments each is restarted from
the empty bid-set 20 times and the best solution on any of the runs is recorded.
In the tables these are identified by appending ×20 to the scoring function. For
example, Price×20 is the randomized hill-climber that makes its probabilistic
selection based on Price.



Combinatorial Auctions, Knapsack Problems, and Hill-Climbing Search 59

Table 1. Percentage of problems on which the heuristic solution is optimal

heuristic arb match path r75P r90P r90N sched
1. Price 3 39 4 0 10 8 14
2. N2norm 4 39 11 0 11 9 14
3. KO 4 25 14 1 10 8 15
best of 1-3 5 54 28 1 11 9 27

4. Price×20 12 39 4 1 19 15 22
5. N2norm×20 9 39 11 0 15 13 19
6. KO×20 13 25 14 1 18 16 22
best of 4-6 19 54 28 2 26 22 37

3 The Test Problems

Test problems were generated using the CATS suite of problem generators ver-
sion 1.0 [26]. Each problem generator in CATS models a particular realistic
scenario in which combinatorial auctions might arise. For example, matching.c
models the sale of airport time-slots. The experiments use each of CATS’s five
generators for single-unit CAs, one with 3 different parameter settings, for a
total of seven different types of test problem. The abbreviations used to identify
the type of test problem in the tables of results and the corresponding CATS
program and parameter settings are as follows (default parameter settings were
used except as noted): arb (arbitrary.c), match (matching.c), path (paths.c
with NUMBIDS=150), r90P (regions.c), r90N (regions.c with ADDITIVITY=
-0.2), r75P (regions.c with ADDITIONAL LOCATION= 0.75), sched (schedul-
ing.c with NUMGOODS=20 and NUMBIDS=200).

100 instances of each problem type are generated. In addition to the hill-
climbers, a systematic search algorithm is run in order to determine the optimal
solution. This is a relatively unsophisticated branch-and-bound search. There
were a handful of instances that it could not solve within a 1 million node limit;
these are excluded from the results.

4 Heuristic Hill-Climbing Experimental Results

Tables 1-3 have a column for each type of test problem and a row for each
of the hill-climbers. There are also two “best of” rows. “Best of 1-3” refers to
the best solution found by the deterministic hill-climbers on each individual
test problem. “Best of 4-6” is the same but for the randomized hill-climbers.
Because hill-climbing is so fast, these represent realistic systems which run a set
of hill-climbers on a given problem and report the best of their solutions.

Table 1 shows the percentage of test problems of a given type that are solved
optimally by a given hill-climber. On the r75P problems the hill-climbers almost
never find the optimal solution. On match, path, and sched problems, the
deterministic hill-climbers collectively (best of 1-3) find the optimal solution on
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Table 2. Suboptimality decile of the worst heuristic solutions

heuristic arb match path r75P r90P r90N sched
1. Price 60-69 (1) 80-89 (8) 70-79 (2) 50-59 (3) 70-79 (7) 60-69 (1) 60-69 (1)
2. N2norm 70-79 (22) 80-89 (8) 80-89 (4) 60-69 (7) 70-79 (8) 60-69 (1) 70-79 (8)
3. KO 60-69 (1) 80-89 (3) 80-89 (3) 60-69 (16) 70-79 (7) 60-69 (1) 70-79 (2)
best of 1-3 70-79 (14) 90-99 (46) 80-89 (1) 60-69 (2) 70-79 (4) 70-79 (5) 80-89 (9)

4. Price×20 80-89 (23) 80-89 (7) 80-89 (28) 70-79 (2) 70-79 (1) 80-89 (18) 80-89 (11)
5. N2norm×20 70-79 (1) 80-89 (7) 80-89 (3) 70-79 (1) 80-89 (11) 80-89 (21) 80-89 (13)
6. KO×20 80-89 (29) 80-89 (1) 80-89 (3) 70-79 (2) 80-89 (13) 80-89 (16) 70-79 (1)
best of 4-6 80-89 (10) 90-99 (46) 90-99 (72) 80-89 (29) 80-89 (3) 80-89 (4) 80-89 (1)

over a quarter of the problems, and on all types of problem except r75P the
randomized hill-climbers collectively find the optimal solution on between 19%
and 54% of the problems.

Table 2 summarizes the worst solutions found by each heuristic on each type
of problem. The heuristic’s solution, as a percentage of the optimal solution,
is put into a 10-point bin, or decile (e.g. 63% falls in the 60-69% decile). The
worst non-empty decile is reported in the table; in brackets beside the decile
is the percentage of test problems that fell into that decile. For example, the
60− 69(1) entry in the upper left indicates that on 1% of the arb problems, the
solutions found by the Price hill-climber were 60-69% of optimal, and on none of
the arb problems were this hill-climber’s solutions worse than 60% of optimal.
On all the problems all the hill-climbers find solutions that are 50% of optimal
or better, and only very rarely do any of them find solutions worse than 70%
of optimal. The solutions found by the randomized hill-climbers are very rarely
worse than 80% of optimal.

Table 3 gives the average percentage of optimal of the solutions found by each
heuristic on each type of problem. The first row is for the “blind” hill-climber
discussed in the next section and will be ignored until then. r75P is clearly
the most difficult type of problem for the hill-climbers. arb, r90P and r90N
are moderately difficult for the deterministic hill-climbers. On all problem types
other than r75P the randomized hill-climbers find solutions that are more than
90% of optimal on average (95% if taken collectively).

The differences between the solutions found by the different hill-climbers are
not large in most cases, but paired t-tests indicate that some of the differences
are significant (p < 0.05). On all types of problem except match, where the dif-
ference was not significant, a randomized hill-climber is significantly better than
the deterministic version with the same scoring function and the randomized
hill-climbers collectively (“best of 4-6”) are significantly better than the deter-
ministic hill-climbers collectively. The Price scoring function is never superior to
others. For deterministic hill-climbing KO is significantly better than N2norm
on sched problems, but the opposite is true on arb, path and r75P problems.
For randomized hill-climbing N2norm is significantly better than KO on path
problems; on all other types of problem either the difference is not significant or
KO is better.
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Table 3. Average solution value as a percentage of optimal

heuristic arb match path r75P r90P r90N sched
blind 84 63 52 73 90 88 65

1. Price 85 97 91 75 90 89 92
2. N2norm 87 97 97 81 90 89 92
3. KO 86 97 96 79 90 89 94
best of 1-3 87 99 98 83 90 89 96

4. Price×20 94 97 92 88 95 94 95
5. N2norm×20 93 97 97 89 94 94 95
6. KO×20 93 97 96 90 95 94 96
best of 4-6 95 99 98 92 96 96 98

The overall conclusion of this experiment is that hill-climbing always finds ac-
ceptable solutions, usually very good ones, for the problem types studied. r75P
is the most challenging problem type. On it the hill-climbers rarely find an opti-
mal solution, but the randomized hill-climbers collectively find a solution that is
at least 90% of optimal more than 60% of the time. Thus, very good solutions are
found most of the time even on the most challenging type of problem. Problem
types match, path, and sched are the easiest. For them very good solutions
can almost always be found even by the deterministic hill-climbers (collectively).

5 Blind Hill-Climbing

The experiment in this section was suggested by the unexpectedly strong per-
formance of Monte Carlo search on some of the standard test problems for the
multidimensional knapsack problem [4]. The previous section has shown that the
scoring mechanisms used by the hill-climbers, especially KO and N2norm, lead
to good solutions. But perhaps a blind hill-climber, which, after pruning, selects
among successors randomly with uniform probability, would do equally well. To
examine this, 100 instances of each problem type were generated, as above, and
solved by the deterministic hill-climbers. In addition, each instance was solved
200 times by the blind hill-climber.

Table 4 gives the percentage of the blind hill-climber’s solutions that are
strictly worse than the solution found by a particular deterministic hill-climber
on each problem type. On match, path and sched problems the deterministic
hill-climbers virtually always outperformed the blind hill-climber. On these types
of problem a well-chosen scoring function is essential for good performance. On
the other types of problem the scoring functions were no better than chance. This
may also be seen by comparing the blind hill-climber’s average solution quality
– the first row in Table 3 – with the averages for the deterministic hill-climbers.

Each column in Table 5 is a histogram. Each of the blind hill-climber’s so-
lutions is expressed as a percentage of the optimal solution and put into the
appropriate decile. The table shows what percentage of the solutions fall into
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Table 4. Percentage of blind solutions worse than heuristic solutions

heuristic arb match path r75P r90P r90N sched
1. Price 20 100 100 53 7 6 98
2. N2norm 40 100 100 76 16 23 99
3. KO 20 100 100 63 7 6 99

Table 5. Percentage of blind solutions in each suboptimality decile

% of optimal arb match path r75P r90P r90N sched
10− 19 0.01
20− 29 0.005 2
30− 39 1 13 0.05
40− 49 8 29 0.12 6
50− 59 29 32* 4 30
60− 69 2 38* 19 30 0.56 33*
70− 79 21 20 5 48* 9 13 20
80− 89 63* 4 0.7 16 46* 45* 8
90− 99 13 0.1 0.03 2 34 33 1.5

100 1 11 9 0.075

each decile for each type of problem. For example, the 0.01 at the top of the path
column means that on problems of type path 0.01% of the blind hill-climber’s
solutions were 10-19% of optimal (i.e. extremely poor). A blank entry represents
0. In each column an asterisk indicates the median decile. On match, path and
sched problems blind hill-climbing sometimes produces very poor solutions and
has a poor median. The opposite is true of arb, r90P and r90N. On these
types of problems no blind hill-climbing solution is worse than 60% of optimal
and the median decile is 80-89%. r75P is of medium difficulty. The bottom row
gives the percentage of blind hill-climbing runs which find the optimal solution.
Comparing this to the deterministic hill-climbing rows in Table 1, it is apparent
that on arb, r90P and r90N problems the ability of the scoring functions to
guide the hill-climber to optimal solutions is no better than chance, whereas on
match, path and sched problems they are far better than chance.

Table 6. Average solution value as a percentage of optimal

hill-climber mknap1 mknap2 mknapcb1 mknapcb2 mknapcb3 mknapcb7
1. Price 90 94 89 89 89 93
2. N2norm 98.99 99.00 98.94 99.03 99.21 98.35
3. KO 83 79 85 85 85 85

blind 84 58 82 83 83 81
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Two overall conclusions follow from the experiments in this and the preceding
section. In problems of type match, path and sched good solutions are rela-
tively rare, but the scoring functions are very effective for these problems and
deterministic hill-climbing performs very well on them. If suboptimal solutions
are acceptable, problems of these types (with the parameter settings used in this
study) are not especially promising as testbeds for comparing search strategies.
By contrast, for problems of type arb, r90P, r90N and r75P the guidance
of the scoring functions is no better than chance. These types of problems are
therefore good choices for evaluating search strategies, but in using them it is
crucial to take into account the high baseline performance of blind hill-climbing.

6 Multidimensional Knapsack Experimental Results

A multi-unit combinatorial auction is precisely a multidimensional knapsack
problem (MDKP): each item in the auction is a “dimension” and including a bid
in the solution bid-set corresponds to putting the bid into the knapsack. MDKP
has been the subject of several theoretical analyses [6,9,12,15,29,38] and experi-
mental investigations involving all manner of search methods, including genetic
algorithms[8,20,24], TABU search [2,19], local search [5,11,30] and classical com-
plete algorithms such as branch-and-bound [16,37] and dynamic programming
[41]. A good review of previous work is given in [8].

A standard set of test problems for the MDKP is available through J.
Beasley’s ORLIB[3]. Files mknap1 [31] and mknap2 [14,36,37,41] contain real-
world test problems widely used in the literature. The others were generated
with the aim of creating more difficult problems[8]. Each problem has an asso-
ciated best known solution, which in some cases is known to be optimal, and in
all cases is extremely close to optimal.

The hill-climbing algorithms were run on the six test sets indicated in the
column headings of Table 6. N2norm performs extremely well. Its average so-
lution is 99% of the best known solution on all the test sets except mknapcb7,
where its average is 98.35%. Only on two problems in mknap2 is its solution
worse than 90% of the best known (those solutions are in the 80-89% range). On
more than 25% of the problems in mknap1 and mknap2 its solution is equal to
the best known (this virtually never happens for the other test sets). N2norm
is competitive with all previously reported systems on these datasets, and supe-
rior to previous “greedy” approaches. The blind hill-climber’s median decile is
50-59% for mknap2, but it is 80-89% for the other test sets, indicating that very
good solutions are abundant. KO performs poorly in the multi-unit setting.

7 Conclusions

The primary aim of this paper has been to examine the performance of hill-
climbing algorithms on standard test problems for combinatorial auctions (CAs).
On the CATS suite of test problems for single-unit CAs deterministic hill-
climbers perform well, and their performance can be improved significantly by
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randomizing them and restarting them several times, or by using them collec-
tively. For some types of problem their performance, although good, is no better
than chance: these types of problems therefore have an abundance of high-quality
solutions. Providing the chance performance baseline is taken into account these
problems are good testbeds for comparative studies. On the other types of CATS
problems the good performance is due to the scoring function that guides the
hill-climbing. Unless parameter settings can be found which result in poor per-
formance by the hill-climbers, these problems are not especially good choices for
testbeds in experiments where suboptimal solutions are permitted. On the stan-
dard test problems for multi-unit CAs (also known as multidimensional knapsack
problems) deterministic hill-climbing using N2norm as a scoring function gener-
ates solutions that are on average 99% of the best known solutions; it is therefore
competitive with all previously reported systems on these problems.
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Abstract. In a concept learning problem, imbalances in the distribution
of the data can occur either between the two classes or within a single
class. Yet, although both types of imbalances are known to affect nega-
tively the performance of standard classifiers, methods for dealing with
the class imbalance problem usually focus on rectifying the between-class
imbalance problem, neglecting to address the imbalance occuring within
each class. The purpose of this paper is to extend the simplest proposed
approach for dealing with the between-class imbalance problem—random
re-sampling—in order to deal simultaneously with the two problems. Al-
though re-sampling is not necessarily the best way to deal with problems
of imbalance, the results reported in this paper suggest that addressing
both problems simultaneously is beneficial and should be done by more
sophisticated techniques as well.

1 Introduction

Imbalanced data sets are inductive learning domains in which one class is rep-
resented by a greater number of examples than the other. 1 Several methods
have previously been proposed to deal with this problem including stratifica-
tion (re-sampling or down-sizing approaches), cost-based learning, and one-sided
learning. In this paper, we will only focus on stratification methods, though the
close relationship between cost-based and stratification based learning makes the
observations made in this paper applicable to cost-based learning as well.

Although stratification approaches have previously been shown to increase
classification accuracy [Kubat and Matwin1997, Ling and Li1998], none of these
studies took into consideration the fact that both between-class and within-class
imbalances may occur. In the context of this study, a between-class imbalance
corresponds to the case where the number of examples representing the posi-
tive class differs from the number of examples representing the negative class;
? This research was supported by an NSERC Research Grant.
1 Throughout this paper, we focus on concept-learning problems in which one class

represents the concept while the other represents counter-examples of the concept.

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 67–77, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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and a within-class imbalance corresponds to the case where a class is composed
of a number of different subclusters and these subclusters do not contain the
same number of examples. The within-class imbalance problem along with the
between-class imbalance problem are instances of the general problem known as
the problem of small disjuncts Holte et al.1989 which can be stated as follows:
Since classification methods are typically biased towards classifying large dis-
juncts (disjuncts that cover a large number of examples) accurately, they have a
tendency to overfit and misclassify the examples represented by small disjuncts.

The purpose of this paper is to show that the within-class imbalance prob-
lem and the between-class imbalance problem both contribute to increasing the
misclassification rate of multi-layer perceptrons. More specifically, the study dis-
tinguishes between different types of imbalances and observes their effects on
classification accuracy with respect to perfectly balanced situations or rebal-
anced ones in artificial domains. It then derives an optimal re-balancing strategy
which it tests on a real-world domain.

2 Experiments on Artificial Domains

This section presents a systematic study of the generalized imbalance problem
in two cases. The first case, the symmetrical case, involves data sets that have as
many subclusters in each class. The second case, the asymmetrical case, involves
data sets that have more subclusters in one class than in the other.

2.1 The Symmetric Case

In order to study the effect of between-class and within-class imbalances as
well as to choose an appropriate solution to these problems in the case of a
symmetrical domain, we generated a series of variations of the X-OR problem in
which the data distribution differed from one experiment to the other. We then
tested the relative accuracy performance of a standard Multi-Layer Perceptron
with fixed parameters. These experiments gave a sense of which tasks are more
or less difficult to learn by this standard classifier.

Task. The X-OR domain used in this experiment is depicted in Figure 1(a).
Each class is composed of two subclusters located at the bottom left and top
right corner in the case of the positive class (positive instances are represented by
‘?’) and at the top left and bottom right corners in the case of the negative class
(negative instances are represented by ‘o’). The subclusters are non-overlapping
and, in the original domain, each subcluster contains 1,500 training examples.
The testing set is distributed in the same way, except for the size of each subclus-
ter which is of 500 examples. Unlike for the training set, the size of the testing
set remains fixed for all the experiments. This means that even if the training
set contains less data in one subcluster than in the other, we consider the small
subcluster to be as important to classify accurately as the larger one. In other
words, the cost of misclassifying the small subcluster is considered to be as high
as the cost of misclassifying the larger one.
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Fig. 1. Experiment on a Symmetric Artificial Domain

Experiments. Starting from the original domain, four series of experiments
were conducted which changed the between-class balance or the within-class
balance of the negative class by modifying the size of the negative subclusters
either at the same rate or at a different one while the size of the positive sub-
clusters was either kept fixed or modified simultaneously. These experiments
were named: 1) Symmetric Balanced Balance (SBB), 2) Symmetric Balanced
Imbalance (SBI), 3) Symmetric Imbalanced Balance (SIB), and 4) Symmetric
Rebalanced Balance (SRB), where the first term indicates that there are as many
subclusters in the positive and negative class, the second one represents the sta-
tus of the within-class cluster relation and the third one represents the status of
the between-class cluster relation.

In other words, SBB corresponds to the experiment in which the four sub-
clusters (positive or negative) are of the same size; SBI corresponds to the case
where although there are as many examples in the two positive subclusters and
the two negative subclusters respectively, there are overall more positive exam-
ples than negative ones; SIB corresponds to the case where the size of the overall
positive set equals that of the negative one, but although the two positive sub-
clusters are of the same size, the two negative ones are of different sizes; finally,
SRB corresponds to the case where the SIB data set has been re-balanced by
resampling each subcluster (positive and negative) to make it match the size
of the largest subcluster present in the training set (this largest subcluster is
necessarily one of the negative subclusters).

Within each experiment set, 10 different degrees of between-class or within-
class imbalance were considered, following an exponential rate of size de-
crease. More specifically, the imbalance was created by decreasing the size of
the subcluster(s) targetted by the particular approach at hand at a rate of
original subcluster size

2i with i = 0..9. For example, when i = 5, the SBB set is com-
posed of two positive and two negative subclusters of size ceiling(1,500

25 ) = 47;
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the SBI set contains two positive subclusters of size 1, 500 each and two negative
subclusters of size ceiling(1,500

25 ) = 47, each; The SIB set contains two positive
subclusters of size 1, 500 each one negative subcluster of size ceiling(1,500

25 ) = 47
and one negative cluster of size 3, 000 − 47 = 2, 953.

As mentioned previously, the size of the parameters of the neural networks
used for these experiments were kept fixed since we are not interested in whether
a neural network can solve the X-OR problem (which we know is always possi-
ble given sufficient ressources), but rather in which tasks cause it more or less
difficulty. The parameters we chose—since they were adequate for the original
domain—were of 4 hidden units and 200 training epochs. The training procedure
used was Matlab’s default optimization algorithm: the Levenberg-Marquardt
procedure. The network used sigmoidal functions in both its hidden and out-
put layer. After being trained, the networks were tested on the testing set. The
experiments were all repeated 5 times and the results of each trial averaged.

Results. The results of all the experiments in this section are reported in Fig-
ure 1(b). In this figure, the results are reported in terms of four quantities: num-
ber of false negatives for positive subcluster 1 (fn1), number of false negatives
for positive subcluster 2 (fn2), number of false positives for positive subcluster
1 (fp1), number of false positives for positive subcluster 2 (fp2). The results
are also reported for each level of imbalance starting at level 0 (no imbalance)
reported in the front row to level 9 (largest imbalance) reported in the back
row. The results are reported in terms of number of misclassified examples in
each subcluster. In each case, the maximum possible number of misclassified
examples is 500, the size of each testing subcluster. The results were reported
in the following order: SBI, SIB, SRBand SBB. This order corresponds to the
least accurate to the most accurate strategy and was chosen to allow for the best
perspective on a single graph.

In more detail, the results indicate that the results on the SBI strategy are
the least accurate because it causes both negative subclusters a high degree of
misclassification. The positive class, on the other hand, is generally well classi-
fied. This can be explained by the fact that, in this experiment, both negative
subclusters have smaller sizes than the positive ones.The degree of imbalance
observed between the two classes, however, does not appear to be an impor-
tant factor in the misclassification rates observed (remember, however, that the
imbalance level grows exponentially which means that the absolute difference
between two consecutive levels is greater at the begining than it is at the end).
The results on the SIB domain are a little more accurate than those on the
SBI domain since this time, only one of the two negative subclusters—the one
represented by the smallest number of examples—suffers from some misclassifi-
cation error. The third set of results, the set of results obtained when using a
rebalancing sampling strategy so as to rectify the SIB problem is shown to be
effective although, as the degree of within-class imbalance in the negative class
increases, the re-sampling strategy is shown to loose some accuracy in the orig-
inally small but re-sampled subcluster, though this loss is much smaller than
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the loss incurred when no re-sampling is used.2 This result can be explained
by the fact that re-sampling the same data over and over is not as useful as
having individual data points belonging to the same distribution (as shown by
the fourth set of results on the SBB domain). Indeed, a re-sampling strategy
may rectify the imbalance problem but it does not introduce all the information
necessary to prevent the inductive learner to overfit the training examples. On
the contrary, it probably encourages some amount of overfitting in the originally
small negative subcluster.

These results, thus, suggest that balancing a domain with respect to the
between-class problem is not sufficient since, if within-class imbalances are
present, the classifier will not be very accurate.

2.2 The Asymmetric Case

Although the experiments of the previous section gave us an idea of the effect
of between-class and within class imbalances on the classification accuracy of a
multi-layer perceptron, they only considered the case where there are as many
subclusters in the positive and the negative class. The question asked in this
section is how to handle the case of within-class and between-class imbalance
when the number of subclusters in each class is different. In particular, we are
interested in finding out whether, in such cases, better classification can be
expected when all the subclusters (independently of their class) are of the same
size and, thus, the two classes are represented by different numbers of examples
or when all the subclusters within the same class are of the same size, but
altogether, the class sizes are the same.
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Fig. 2. Experiment on an Asymmetric Artificial Domain

2 In a couple of isolated cases, one of the positive subclusters also seems to be affected,
but the significance of this observation is unclear.
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Task. In order to answer this question, we generated a new test set closely
related to the X-OR problem of the previous section. As a matter of fact, the
test set represents the X-OR problem plus two new negative subclusters, both
located on the same diagonal as the two positive subclusters, but just outside
the square formed by linking the four subclusters of the X-OR problem. This
new problem is depicted in Figure 2(a) with ‘?’ representing positive examples
and ‘o”s representing negative ones.

Once again, each subcluster of the training set is originally represented by
1,500 examples, independently of its class. Like in the previous section, the
testing set is distributed in the same way, except for the size of each subcluster
which is of 500 examples.

Experiments. In this section, two series of experiments were conducted that
only changed the between-class balance. The within-class balance was untouched
(since its effect was already tested in the previous section) although the size of
the subclusters belonging to each class, respectively, was allowed to differ. These
experiments were named: Asymetric Balanced Balance (ABB) and Asymetric
Balanced Imbalance (ABI), where the first term indicates that there are differ-
ent numbers of subclusters per class, the second term represents the status of
the within-class cluster relation and the third one represents the status of the
between-class cluster relation. In other words, ABB corresponds to the exper-
iment in which the two positive subclusters are of the same size and the four
negative subclusters are of the same size, but the negative subclusters are half
the size of the positive ones so that, altogether, the two classes have the same
number of training instances; ABI corresponds to the case where all the positive
and negative subclusters are of the same size and, thus, the two classes have
different numbers of training instances.

Again within each experiment set, 10 different degrees of between-class
or within-class imbalance were considered, following an exponential rate of
size decrease. As before, the imbalance was created by decreasing the size of
the subcluster(s) targetted by the particular approach at hand at a rate of
original subcluster size

2i with i = 0..9. For example, when i = 5, the ABB Set
has two positive subclusters of size ceiling(1,500

25 ) = 47 and four negative sub-
clusters of size floor( 1,500

2×25 ) = 23, with no between-class imbalance; Similarly,
the ABI set is composed of two positive and four negative subclusters of size
ceiling( 1,500

25 ) = 47, each, thus creating a between-class imbalance of 94 exam-
ples.

Like previously and for the same reasons, the size of the parameters of the
neural networks used for these experiments were kept fixed, though, due to the
increased difficulty of the test domain, we increased the number of hidden units to
8. All the other parameters remained the same. These parameters were adequate
for the original domain of Figure 2(a). After being trained, the networks were
again tested on a testing set. The experiments were all repeated 5 times and the
results of each trial averaged.
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Results. The results of all the experiments in this section are reported in Fig-
ure 2(b). In this figure, the results are reported in terms of six quantities: number
of false negatives for positive subcluster 1 (fn1) and positive subcluster 2 (fn2),
number of false positives for positive subcluster 1 (fp1), positive subcluster 2
(fp2), positive subcluster 3 (fp3) and positive subcluster 4 (fp4). The results
are also reported for each level of imbalance starting at level 0 (no imbalance)
reported in the front row to level 9 (largest imbalance) reported in the back row.
The results are reported in terms of number of misclassified examples in each
subcluster. In each case, the maximum number of misclassified examples is 500,
the size of each testing subcluster. The results were reported in the following
order: ABI and ABB since this order corresponds to the least accurate to the
most accurate strategy and was, again, chosen to allow for the best perspective
on a single graph.

In more detail, the results indicate that the results on the ABI domain are
less accurate than those obtained on the ABB domain because they suggest
that the two positive subclusters are prone to misclassification errors whereas
they are generally not in the case of the ABB domain. This can be explained
by the fact that in the ABI domain, the size of the positive class is half that
of the negative one. In most cases, it thus, appears that it is generally better
to be in a situation where the two classes are balanced (with no between- nor
within-class imbalance), even if that means that the size of the subclusters of
the class composed of the greater number of subcluster is smaller than that of
its counterparts in the other class.3

3 An Optimal Re-balancing Strategy

Based on the results obtained in the symmetrical and asymmetrical domains of
section 2, we can now hypothesize on an optimal re-balancing strategy for the
cases where both within-class and between-class imbalances are present in a do-
main. The benefits of this strategy is then tested in a grouped-letter recognition
problem.

3.1 Formulation of the Strategy

Let L be a concept-learning problem with two classes A and B each com-
posed of NA and NB subclusters respectively. Class A is composed of sub-
clusters ai of size ni

a, respectively (with i ∈ {1, 2, ...NA}) and class B is com-
posed of subclusters bj of size nj

b, respectively (with j ∈ {1, 2, ...NB}). Let
maxclusterA = max(n1

a, n
2
a, ...n

NA
a ) and maxclusterB = max(n1

b , n
2
b , ..., n

NB

b ).
Let, further, maxclasssize = max(maxclusterA × NA,maxclusterB × NB)
and maxclass be the class corresponding to maxclasssize (i.e., class A in case
3 Note, however, that the graph shows several cases where the ABB strategy causes

misclassification to the negative class. These cases, however, are rarer than the cases
where the positive class is negatively affected in the ABI situation.
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maxclusterA ×NA ≥ maxclusterB ×NB and class B, otherwise. Let altclass be
the class not corresponding to maxclass (i.e., altclass=A if maxclass=B and vice-
versa). According to the results of Section 2, L will be learned more accurately
by multi-layer perceptrons if the training set is transformed as follows:

Each subcluster of class maxclass is re-sampled until it reaches size
maxclustermaxclass. At this point, the overall size of maxclass will
be maxclasssize and there will be no within-class imbalance in class
maxclass. In order to prevent a between-class imbalance as well as
within-class imbalances in altclass, each subcluster of altclass is re-
sampled until it reaches size maxclasssize/Naltclass.

This procedure will guarantee no between-class imbalance and no within-class
imbalance although, like in the asymmetrical case above, the size of A’s subclus-
ters may differ from that of B’s.

3.2 Testing the Stategy

In order to determine whether the strategy just derived is practical, we tested our
approach on a real world-domain. In particuliar, we tested the multi-layer per-
ceptron on the letter recognition problem consisting of discriminating between
a certain number of vowels and consonnants.

More specifically, we used the letter recognition data set available from the
UC Irvine Repository. However, we defined a subtask which consisted of recog-
nizing vowels from consonnants and, in order to make our task more tractable,
we reduced the vowel set to the letters a, e, and u and the consonnant set to
the letters m, s, t and w. In addition, rather than assuming the same number
of examples per letter in the training set, we constructed the training data in
a way that reflects the letter frequency in English text.4 The testing set was
always fixed and consisted of 250 data points per letter. The reason why the
distribution of the testing set differs from that of the training set is because
the cost of misclassifying a letter is independent of its frequency of occurence.
For example, confusing “war” for “car” is as detrimental as confusing “pet” for
“pat” even though “w” is much more infrequently used than “e”.

In the experiments we conducted on these data, the performance of the multi-
layer perceptron was compared to its performance in three different training-set
situations: Imbalance, Naive Re-Balance, Informed Re-Balance, and Uninformed
Re-Balance. The purpose of the Imbalance, Naive Re-Balance, and Informed-
Rebalance experiments is simply to verify whether our optimal-resampling strat-
egy also helps on a real-world domain. The Imbalance experiment consisted of
running the multi-layer perceptron on the letter recognition domain without
4 In particular, we relied on the following frequencies: a: .0856, e: .1304, u: .0249, m:

.0249, s: .0607, t: .1045, w: .0017 and consequently built a training set containing
the following corresponding number of training examples per letter: a= 335 points,
e= 510 points, u= 97 points, m= 97 points, s= 237 points, t= 409 points, w= 7
points. These letters were chosen because of their interesting differing frequencies.
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practicing any type of re-balancing. The Naive Re-Balance strategy consisted of
re-sampling from the negative class (containing 750 training data), ignoring its
internal distribution, until its size reached that of the positive class (contain-
ing 942 training data). The Informed-Rebalance experiment assumes that the
subcluster division of each class is fully known and the data sets are rebalanced
according to our optimal re-balancing strategy.5 In the Uninformed Re-Balance
strategy, no prior knowledge about the data is assumed. In this case, the k-means
unsupervised learning algorithm is used to determine the inner-distribution of
each class, followed by our optimal re-balancing method.6

In all three experiments, the neural networks were optimized using Matlab’s
default optimization algorithm: Levenberg-Marquardt, and the network used
sigmoidal units in both their hidden and output layers. In each experiment, four
different networks were ran five times each with 2, 4, 8 and 16 hidden units. The
results were averaged over the five runs and the best results were reported.

The results obtained on these experiments are reported in Figure 3. In partic-
ular, Figure 3 is composed of 8 clusters of 4 columns each. Within each cluster,
each column corresponds to the performance of each of our 4 strategies. The
leftmost column of each cluster represents the results obtained on the Imbalance
experiment; next are the results obtained with the Naive Re-Balance Strategy;
this is followed with the Informed Re-Balance strategy; and the last column was
obtained using the Uninformed Re-Balance strategy. The rightmost cluster rep-
resents the cumulative results obtained on the overall testing set, while each of
the preceeding cluster represents the results on particular subclusters.
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5 Although this situation is unrealistic, this case is considered since it represents a
lower bound on the results that can be obtained using our re-sampling strategy.

6 An estimate of the number of clusters per class was determined prior to running the
k-means algorithm. Our estimation procedure, however, is sub-optimal and will be
refined in future work, using cross-validation experiments.
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The results shown in Figure 3 suggest that, overall, as can be expected the
Imbalance experiment shows a slightly larger error rate than the Naive Re-
Balance experiment. The Informed Re-balance experiment shows a lower error
rate than the Naive Re-Balance experiment and the Uninformed Re-Balance ex-
periment falls in-between the two results, helping to improve on the imbalanced
results, but not performing quite as well as in the case where the composition
of each class is fully known. In more detail, the results show that the Informed
and Uninformed Re-Balance strategies are particularly effective in the case of
a very small subcluster (w), but that the Uninformed strategy causes a slight
decrease in accuracy in the other subclusters. This is usually not the case for
the Informed strategy and we hope that improving our clustering approach in
the Uninformed strategy will help in reducing this problem.

4 Conclusion and Future Work

It is not uncommon for classification problems to suffer from the problem of class
imbalances. In particular, these imbalances can come in two forms: between-
class and within-class imbalances. Though both problems are well-known and
have been previously considered in the machine learning literature, they have
not been previously considered simultaneously. The purpose of this paper was
to derive a re-sampling strategy that considers both imbalances simultaneously
and demonstrate that even a very simple method for dealing with the problem
can be helpful in the case of drastically imbalanced subclusters.

There are many extensions of this work. First, the experiments on artificial
domains were conducted on unnaturally imbalanced data sets. It would be useful
to repeat these experiments on naturally imbalanced ones. Second, rather than
testing our re-balancing strategy on a balanced domain, it would be more rep-
resentative to test it on a range of class distributions using ROC Hulls or Cost
Curves [Provost and Fawcett2001, Drummond and Holte2000]. Third, it would
be interesting to test our strategy on other classifiers and other domains.7 Fi-
nally, we should try to adapt our strategy to cost-based algorithms that usually
perform more accurately on imbalanced data sets than stratification methods.
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Abstract. Constraint programming is a methodology for solving diffi-
cult combinatorial problems. In the methodology, one makes three de-
sign decisions: the constraint model, the search algorithm for solving the
model, and the heuristic for guiding the search. Previous work has shown
that the three design decisions can greatly influence the efficiency of a
constraint programming approach. However, what has not been explic-
itly addressed in previous work is to what level, if any, the three design
decisions can be made independently. In this paper we use crossword
puzzle generation as a case study to examine this question. We draw
the following general lessons from our study. First, that the three design
decisions—model, algorithm, and heuristic—are mutually dependent. As
a consequence, in order to solve a problem using constraint programming
most efficiently, one must exhaustively explore the space of possible mod-
els, algorithms, and heuristics. Second, that if we do assume some form
of independence when making our decisions, the resulting decisions can
be sub-optimal by orders of magnitude.

1 Introduction

Constraint programming is a methodology for solving difficult combinatorial
problems. A problem is modeled by specifying constraints on an acceptable so-
lution, where a constraint is simply a relation among several unknowns or vari-
ables, each taking a value in a given domain. Such a model is often referred to
as a constraint satisfaction problem or CSP model. A CSP model is solved by
choosing or designing an algorithm that will search for an instantiation of the
variables that satisfies the constraints, and choosing or designing a heuristic that
will help guide the search for a solution.

As previous work has shown, the three design decisions—model, algorithm,
and heuristic—can greatly influence the efficiency of a constraint programming
approach. For example, Nadel [13] uses the n-queens problem to show that there
are always alternative CSP models of a problem and that, given the naive chrono-
logical backtracking algorithm, these models can result in different problem solv-
ing performances. Ginsberg et al. [9] use one possible model of crossword puzzle
generation (model m2 in our notation) to study the effect on performance of var-
ious backtracking algorithms and variable ordering heuristics. Smith et al. [17]
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use Golomb rulers to study the effect on performance of alternative models, al-
gorithms and heuristics. Finally, a variety of studies have shown how the relative
performance of various search methods and heuristics vary with properties of a
random binary CSP instance such as domain sizes, tightness of the constraints,
and sparseness of the underlying constraint graph (e.g., [2,6,8,10,18]).

However, what has not been explicitly addressed in previous work is to what
level, if any, the three design decisions can be made independently. There are
three possible levels of independence in the design decisions: complete indepen-
dence, one-factor independence, and conditional independence (see, e.g., [4]).
Suppose that there are four choices each for the model, the algorithm, and the
heuristic. Complete independence would mean that choosing the best model, the
best algorithm, and the best heuristic could all be done independently and a to-
tal of 4+4+4 = 12 tests would need to be performed to choose the best overall
combination. One-factor independence would mean that, while two of the design
decisions might depend on each other, the third could be made independently
and a total of 4 + (4 × 4) = 20 tests would need to be performed to choose the
best overall combination. Conditional independence would mean that two of the
design decisions could be made independently, given the third design decision
and a total of 4 × (4 + 4) = 32 tests would need to be performed to choose the
best overall combination. Finally, if none of the independence conditions hold
and the design decisions are mutually dependent a total of 4 × 4 × 4 = 64 tests
would need to be performed to choose the best overall combination. Thus, it
is clear that the level of independence of the design decisions can have a large
impact if we seek the best overall combination of decisions.

In this paper we use crossword puzzle generation as a case study to exam-
ine the interdependence of the choice of model, backtracking search algorithm,
and variable ordering heuristic on the efficiency of a constraint programming
approach. We perform an extensive empirical study, using seven models, eight
backtracking algorithms, and three variable ordering heuristics for a total of
34 different combinations (not all algorithms can be applied on all models).
The goal of our study is to examine to what extent the design decisions can be
made independently. We draw the following general lessons from our study. First,
that the three design decisions—model, algorithm, and heuristic—are mutually
dependent. In other words, neither complete independence, one-factor indepen-
dence, nor conditional independence hold. As a consequence, in order to solve a
problem using constraint programming most efficiently, one must exhaustively
explore the space of possible models, algorithms, and heuristics. Second, that
if we do assume some form of independence when making our decisions, the
resulting decisions can be sub-optimal. As one example, if the model is chosen
independently of the algorithm and the heuristic, the result can be orders of
magnitude less effective as the best algorithm and heuristic cannot overcome a
poor choice of model.
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2 CSP Models for Crossword Puzzles

In crossword puzzle generation, one is required to fill in a crossword puzzle
grid with words from a pre-defined dictionary such that no word appears more
than once. An example grid is shown in Figure 1. In this section, we present
the seven different CSP models of the crossword puzzle problem that we used
in our experiments. A constraint satisfaction problem (CSP) consists of a set
of variables, a domain of possible values for each variable, and a collection of
constraints. Each constraint is over some subset of the variables called the scheme
of the constraint. The size of this set is known as the arity of the constraint.

1

8

131211

14

2119

2 3

9 10

20

7654

1615 17 18

Fig. 1. A crossword puzzle grid.

Model m1. In model m1 there is a variable for each unknown letter in the
grid. Each variable takes a value from the domain {a, . . . , z}. The constraints
are of two types: word constraints and not-equals constraints. There is a word
constraint over each maximally contiguous sequence of letters. A word constraint
ensures that the sequence of letters forms a word that is in the dictionary. The
arity of a word constraint reflects the length of the word that the constraint
represents. For example, the word at “1 Across” in Figure 1 has three letters
and will result in a 3-ary constraint over those letter variables. The tuples in the
word constraints represent the words that are of the same length as the arity
of the constraint in the pre-defined dictionary. There is a not-equals constraint
over pairs of maximally contiguous sequences of letters of the same length. A
not-equals constraint ensures that no word appears more than once in the puzzle.
The arity of a not-equals constraint depends on whether the corresponding words
intersect. For example, the words at “9 Across” and “3 Down” will result in a
9-ary constraint over those letter variables.
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Model m+
1 . Model m+

1 is model m1 with additional, redundant constraints.
One technique to improve the performance of the forward checking algorithm
is to add redundant constraints in the form of projections of the existing con-
straints. (Projection constraints are not as effective for algorithms that maintain
generalized arc consistency.) In model m+

1 , for each word constraint C and for
each proper subset S of the variables in the scheme of C in which the variables
are consecutive in the word, we add a redundant constraint which is the projec-
tion of C onto S. For example, for the constraint over the three letter variables
x1, x2, and x3 which form the word at “1 Across” in Figure 1, projection con-
straints would be added over x1 and x2, and over x2 and x3. The tuples in these
constraints would represent the valid prefixes and valid suffixes, respectively, of
the three-letter words in the dictionary.

Model m2. In model m2 there is a variable for each unknown word in the grid.
Each variable takes a value from the set of words in the dictionary that are of
the right length. The constraints are of two types: intersection constraints and
not-equals constraints. There is an intersection constraint over a pair of distinct
variables if their corresponding words intersect. An intersection constraint en-
sures that two words which intersect agree on their intersecting letter. There
is a not-equals constraint over a pair of distinct variables if their correspond-
ing words are of the same length. A not-equals constraint ensures that no word
appears more than once in the puzzle. All of the constraints in model m2 are
binary. Although a natural model, model m2 can be viewed as a transformation
of model m1 in which the constraints in m1 become the variables in m2. The
transformation, known as the dual transformation in the literature, is general
and can convert any non-binary model into a binary model [16].

Model m3. In model m3 there is a variable for each unknown letter in the grid
and a variable for each unknown word in the grid. Each letter variable takes
a value from the domain {a, . . . , z} and each word variable takes a value from
the set of words in the dictionary that are of the right length. The constraints
are of two types: intersection constraints and not-equals constraints. There is
an intersection constraint over a letter variable and a word variable if the letter
variable is part of the word. An intersection constraint ensures that the letter
variable agrees with the corresponding character in the word variable. There is a
not-equals constraint over a pair of distinct word variables if their corresponding
words are of the same length. All of the constraints in modelm3 are binary. Model
m3 can be viewed as a transformation of model m1 which retains the variables in
the original problem plus a new set of variables which represent the constraints.
The transformation, known as the hidden transformation in the literature, is
general and can convert any non-binary model into a binary model [16].

A CSP problem can be encoded as a satisfiability (SAT) problem (see, e.g.,
[19]). To illustrate the encoding we use in this paper, consider the CSP with
three variables x, y, and z, all with domains {a, b, c}, and constraints x 6= y,
x 6= z, and y 6= z. In the SAT encoding a proposition is introduced for every
variable in the CSP and every value in the domain of that variable: xa, xb, xc, ya,
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yb, yc, and za, zb, zc. The intended meaning of the proposition xa, for example,
is that variable x is assigned the value a. Clauses (or constraints) are introduced
to enforce that each variable must be assigned a unique value. For example, for
the variable x, the following clauses are introduced: xa ∨ xb ∨ xc, xa ⇒ ¬xb,
xa ⇒ ¬xc, and xb ⇒ ¬xc. Clauses are introduced to specify the illegal tuples in
the constraints. For example, for the constraint x 6= y, the following clauses are
introduced: xa ⇒ ¬ya, xb ⇒ ¬yb, and xc ⇒ ¬yc.

Model s1. Model s1 is the SAT encoding of model m1 with the following im-
provements designed to reduce the amount of space required. In the generic
encoding, clauses are introduced to rule out the tuples that are not allowed by a
constraint. For the word constraints in m1, the illegal tuples represent sequences
of letters that are not words in the dictionary. In s1, not all illegal words are
translated to clauses. Instead, we translate all invalid prefixes. For example, “aa”
is not a valid prefix for words of length 4. Instead of recording all of the illegal
tuples “aaaa” . . . “aazz”, just “aa” is recorded. For not-equals constraints in m1,
only the tuples that form a word are translated into clauses in s1. For example,
we do not say that “aaaa” 6= “aaaa” because “aaaa” is not a valid word.

Model s2. Model s2 is the SAT encoding of model m2. In particular, for each
pair of propositions that represents intersecting words in the puzzle and words
from the dictionary that do not agree, we introduce a negative binary clause
ruling out the pair.

Model s3. Model s3 is the SAT encoding of model m3 with the following im-
provements. The clauses for the domains of the hidden variables that ensure
that each word must get a unique value are dropped as they are redundant (the
clauses for the domains of the letter variables and the clauses for the intersection
constraints together entail that a hidden variable can take only one value).

3 Backtracking Algorithms

In this section, we present the eight different backtracking algorithms we used
in our experiments. At every stage of backtracking search, there is some current
partial solution which the algorithm attempts to extend to a full solution by
assigning a value to an uninstantiated variable. The idea behind some of the most
successful backtracking algorithms is to look forward to the variables that have
not yet been given values to determine whether a current partial solution can be
extended towards a full solution. In this forward looking phase, the domains of
the uninstantiated variables are filtered based on the values of the instantiated
variables. The filtering, often called constraint propagation, is usually based
on a consistency technique called arc consistency or on a truncated form of arc
consistency called forward checking (e.g., [7,10]). If the domain of some variable is
empty as a result of constraint propagation, the partial solution cannot be part of
a full solution, and backtracking is initiated. A further improvement can be made
to backtracking algorithms by improving the backward looking phase when the
algorithm reaches a dead-end and must backtrack or uninstantiate some of the
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variables. The idea is to analyze the reasons for the dead-end and to backtrack
or backjump enough to prevent the conflict from reoccurring (e.g., [7,14]). All of
the algorithms we implemented used some form of constraint propagation and
all were augmented with conflict-directed backjumping [14].

Algorithm FC. Algorithm FC performs forward checking [10].

Algorithm GAC. Algorithm GAC performs generalized arc consistency prop-
agation in the manner described in [12].

Algorithm EAC. Algorithm EAC performs generalized arc consistency propa-
gation in the manner described in [3]. In the implementation of EAC used in the
experiments the constraints were stored extensionally and advantage was taken
of this fact to improve overall performance.

Algorithms PAC(m1), PAC(m2), and PAC(m3). A technique for improv-
ing the efficiency of generic constraint propagation is to design special purpose
propagators where constraints have methods attached to them for propagating
the constraint if the domain of one of its variables changes (see, e.g., [1]). Prop-
agators provide a principled way to integrate a model and an algorithm [15]. We
designed and implemented propagators which enforce arc consistency for each
of the constraints in models m1, m2, and m3.

Algorithms ntab back, ntab back2. These algorithms are the implementa-
tions of the TABLEAU algorithm described in [5]. Algorithm ntab back uses
backjumping and algorithm ntab back2 uses relevance bounded learning1.

4 Experimental Results

We tested a total of 34 different combinations of seven models, eight backtracking
algorithms, and three variable ordering heuristics (not all algorithms can be
applied on all models; e.g., the algorithms based on TABLEAU are applicable
only to SAT problems and each propagator-based algorithm is designed for a
particular model). The three dynamic variable orderings heuristics used were
the popular dom+deg heuristic [10] which chooses the next variable with the
minimal domain size and breaks ties by choosing the variable with the maximum
degree (the number of the constraints that constrain that variable, excluding the
not-equals constraints), the dom/deg heuristic proposed by Bessière and Régin
[2] which chooses the next variable with the minimal value of the domain size
divided by its degree, and a variant of the MOM heuristic [5] which is geared to
SAT problems and chooses the next variable with the Maximum Occurrences in
clauses of Minimum size.

In the experiments we used a test suite of 50 crossword puzzle grids and two
dictionaries for a total of 100 instances of the problem that ranged from easy
to hard. For the grids, we used 10 instances at each of the following sizes: 5×5,

1 Available at: http://www.cirl.uoregon.edu/crawford
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Table 1. Effect of model, algorithm, and heuristic on number of instances (out of a
total of 100) that could be solved given a limit of 228 Mb of memory and ten hours of
CPU time per instance; (a) dom+deg heuristic; (b) dom/deg heuristic; (c) variant of
the MOM heuristic. The absence of an entry means the combination was not tested.

model
algorithm m1 m+

1 m2 m3

FC 20 59 61 48
GAC 20 10 50 83
EAC 89 0 0
PAC 88 80 84

model
algorithm m1 m+

1 m2 m3

FC 20 50 63 55
GAC 20 10 50 81
EAC 92 0 0
PAC 91 85 84

model
algorithm s1 s2 s3

ntab back 10 0 20
ntab back2 11 0 20

(a) (b) (c)

15×15, 19×19, 21×21, and 23×232. For the dictionaries, we used Version 1.5 of
the UK cryptics dictionary3, which collects about 220,000 words and in which
the largest domain for a word variable contains about 30,000 values, and the
Linux /usr/dict/words dictionary, which collects 45,000 words and in which the
largest domain for a word variable has about 5,000 values. Although use of a
smaller dictionary decreases the size of search space, the number of solutions
also decreases and, in this case, made the problems harder to solve.

All the experiments except those for EAC were run on a 300 MHz Pentium
II with 228 Megabytes of memory. The experiments on EAC were run on a
450 MHz Pentium II and the CPU times were converted to get approximately
equivalent timings. A combination of model, algorithm, and variable ordering
heuristic was applied to each of the 100 instances in the test suite. A limit of ten
hours of CPU time and 228 Megabytes of memory was given in which to solve
an instance. If a solution was not found within the resource limits, the execution
of the backtracking algorithm was terminated.

Table 1 summarizes the number of instances solved by each combination.
The low numbers of instances solved by the SAT-based models are due to both
the time and the space resource limits being exceeded (as can be seen in Table 2,
the SAT models are large even for small instances and storing them requires a
lot of memory). The EAC algorithm also consumes large amounts of memory
for its data structures and ran out of this resource before solving any instances
from models m2 and m3. In all other cases, if an instance was not solved it was
because the CPU time limit was exceeded.

Because the number of instances solved is a coarse measure, Figure 2 shows
approximate cumulative frequency curves for some of the timing results. We can
read from the curves the 0, . . . , 100 percentiles of the data sets (where the value
of the median is the 50th percentile or the value of the 50th test). The curves
are truncated at time = 36000 seconds (ten hours), as a backtracking search was
aborted when this time limit was exceeded.
2 The ten 5 × 5 puzzles are all of the legal puzzles of that size; the other puzzles were

taken from the Herald Tribune Crosswords, Spring and Summer editions, 1999.
3 Available at: http://www.bryson.demon.co.uk/wordlist.html
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Table 2. Size of an instance of a model given a dictionary and the grid shown in
Figure 1, where n is the number of variables, d is the maximum domain size, r is the
maximum constraint arity, and m is the number of constraints.

model dictionary n d r m

m1 UK 21 26 10 23
m+

1 UK 21 26 10 83
m2 UK 10 10,935 2 34
m3 UK 31 10,935 2 55
s1 UK 546 2 26 1,336,044
s2 UK 65,901 2 10,935 ≈ 8 × 108

s3 UK 66,447 2 10,935 408,302
m1 words 21 26 10 23
m+

1 words 21 26 10 83
m2 words 10 4,174 2 34
m3 words 31 4,174 2 55
s1 words 546 2 26 684,464
s2 words 26,715 2 4,174 ≈ 2 × 108

s3 words 27,261 2 4,174 168,339
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Fig. 2. Effect of model on time (sec.) of backtracking algorithms, given the dom/deg
dynamic variable ordering heuristic. Each curve represents the result of applying the
given backtracking algorithm to the 100 instances in the test suite, where the instances
are ordered by time taken to solve it (or to timeout at 36,000 seconds).

5 Analysis

In this section, we use the experimental results to show that the design deci-
sions are not completely independent, one-factor independent, nor conditionally
independent. Hence, the design decisions are mutually dependent.
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Complete independence. For the choice of the best model, algorithm, and
heuristic to be completely independent decisions all of the following must hold:
(i) the ordering of the models, such as by number of problems solved, must be
roughly invariant for all algorithms and heuristics, (ii) the ordering of the al-
gorithms must be roughly invariant for all models and heuristics, and (iii) the
ordering of the heuristics must be roughly invariant for all models and algo-
rithms. However, none of these conditions hold. For (i), consider the different
orderings of the models given by FC and GAC using the dom+deg heuristic in
Table 1; for (ii), consider the relative orderings of the FC and GAC algorithms
given by the different models; and for (iii), consider the reversed orderings of the
heuristics given by FC on m+

1 and m3.

One-factor independence. One-factor independence can occur in three ways,
corresponding to the three conditions given under complete independence. As
shown there, none of these conditions hold.

Conditional independence. Conditional independence of the decisions can
occur in three ways: (i) the choice of the best algorithm and heuristic can be
independent decisions, given a choice of model (i.e., given a model, the ordering
of the algorithms is roughly invariant for all heuristics, and, by symmetry, the
ordering of the heuristics is roughly invariant for all algorithms); (ii) the choice
of the best model and heuristic can be independent decisions, given a choice of
algorithm (i.e., given an algorithm, the ordering of the models is roughly invari-
ant for all heuristics, and the ordering of the heuristics is roughly invariant for
all models); and (iii) the choice of the best model and algorithm can be indepen-
dent decisions, given a choice of heuristic (i.e., given a heuristic, the ordering of
the models is roughly invariant for all algorithms, and the ordering of the algo-
rithms is roughly invariant for all models). For (i), suppose the model given is
m3 and consider the reversed orderings of the heuristics given by FC and GAC;
for (ii), suppose the algorithm given is FC and consider the reversed orderings
of the heuristics given by m+

1 and m3; and for (iii), suppose the heuristic given
is dom+deg and consider the different orderings of the models given by FC and
GAC.

We can also see from the data the importance of choosing or formulating a
good model of a problem. In Table 1 we see that the best algorithm or set of
algorithms cannot overcome a poor model and compiling a CSP to an instance
of SAT in order to take advantage of progress in algorithm design (cf. [11]) can
be a disastrous approach. In Figure 2 we see that even when our models are
all relatively good models (such as m1, m2, and m3), and much effort is put
into correspondingly good algorithms, the form of the model can have a large
effect—ranging from one order of magnitude on the instances of intermediate
difficulty to two and three orders of magnitude on harder instances.

6 Conclusions

We draw the following three general lessons from our study: (i) the form of
the CSP model is important; (ii) the choices of model, algorithm, and heuristic
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are interdependent and making these choices sequentially or assuming a level of
independence can lead to non-optimal choices; and (iii) to solve a problem using
constraint programming most efficiently, one must simultaneously explore the
space of models, algorithms, and heuristics.
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Abstract. In this paper, we consider the optimal sequencing of vehicles
along multiple assembly lines. We present a constraint-based model of the
problem with hard and soft constraints. An advantage of a constraint-
based approach is that the model is declarative and there is a separation
between the model and an algorithm for solving the model. As a result,
once the model had been defined, we could experiment with different
algorithms for solving the model, with few or no changes to the model
itself. We present three approximation algorithms for solving the model—
a local search algorithm, a backtracking algorithm with a constraint re-
laxation and restart scheme, and a branch and bound algorithm—and
we compare the quality of the solutions and the computational perfor-
mance of these methods on six real-world problem instances. For our
best method, a branch and bound algorithm with a decomposition into
smaller sub-problems, we obtained improvements ranging between 2%
and 16% over an existing system based on greedy search.

1 Introduction

The vehicle assembly line sequencing problem is to determine the order in which
a given list of vehicles should be produced on one or more assembly lines subject
to a set of constraints. Determining a good sequence is important as the sequence
chosen affects the cost of production, the quality of the vehicles produced, and
even employee satisfaction.

The particular problem that we study comes from a North American man-
ufacturing plant that produces approximately 36,000 vehicles in a month on
two assembly lines and the sequencing is done once per month. A system devel-
oped by TigrSoft Inc., an Edmonton company that specializes in planning and
scheduling software, currently schedules the production of vehicles. While our
motivating application is quite specific, the constraints which define the quality
of a sequence are shared with other sequencing and scheduling problems. For
example, one important constraint on an acceptable sequence in our problem is
that each day a worker on an assembly line should see as much diversity as the
current orders permit, including making economy and luxury models, four and
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five door models, and so on. This “distribution” constraint allows the assembly
line workers to maintain their skill set as well as ensuring that at least a certain
amount of every order is produced prior to any unexpected line shutdowns. Sim-
ilar distribution constraints arise in diverse scheduling problems from scheduling
sports teams, where the issue of a fair distribution of rest and travel days arises,
to other manufacturing problems where a robust schedule is desired in the face
of possible machine breakdowns. A second example of important constraints on
acceptable sequences are “change-over” constraints that prohibit undersirable
transitions such as sequencing white vehicles immediately after red vehicles (the
vehicles could come out an undesirable pink colour). Similar change-over con-
straints also arise in other manufacturing scheduling problems.

In this paper, we describe how we modeled and solved this real-world vehi-
cle assembly line sequencing problem using a constraint-based approach. In a
constraint-based approach to problem solving, a problem is modeled by specify-
ing constraints on an acceptable solution, where a constraint is simply a relation
among several unknowns or variables, each taking a value from a given domain
(see [4] for an introduction). Our model contains both hard constraints (must be
satisfied) and soft constraints (can be violated at a cost). Each soft constraint is
associated with a penalty value that is incurred every time it is violated. Thus
the problem is one of optimization on these penalty values.

An advantage of a constraint-based approach is that the model is declarative
and there is a separation between the model and an algorithm for solving the
model. As a result, once the model had been defined, we could experiment with
different search algorithms for solving the model, with few or no changes to the
model itself. We present three approximation algorithms for solving the model:
a local search algorithm, a backtracking algorithm with a constraint relaxation
and restart scheme, and a branch and bound algorithm. We also demonstrate the
importance of decomposing the problem into one-day sub-problems. We compare
the quality of the solutions and the computational performance of these meth-
ods on six real-world problem instances. For our best method, a branch and
bound algorithm with a decomposition into smaller sub-problems, we obtained
improvements ranging between 2% and 16% over the existing system developed
by TigrSoft, which is based on greedy search.

The software we have developed is in a stand-alone prototype form. We are
currently integrating our work into TigrSoft’s deployed system and hope in the
near future to perform user trials in a production environment.

Related work. Assembly lines are process-oriented and are arranged according
to the sequence of operations needed to manufacture a product. This is in con-
trast to job shops which are job-oriented and machines which perform similar
operations are spatially grouped together. While there has been an extensive
amount of work on job shop scheduling (see [11] for an overview of constraint-
based approaches), in spite of its importance, there has been little work reported
specifically on the vehicle assembly line sequencing problem in the literature.

Of the work that has been reported, most has focused on the specification
of the vehicle assembly line sequencing problem introduced by Parrello et al.
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[6]. Van Hentenryck et al. [10] and Régin and Puget [7] solve this version of
the problem using backtracking search with specialized propagators to maintain
arc consistency during the search. Local search techniques have also been devel-
oped for this version of the problem including a hill-climbing approach [3] and a
simulated annealing approach [9]. However, while this specification has demand
and capacity constraints, it omits time-window, change-over, and balancing con-
straints important in our version of the problem.

More directly related is the work done by ILOG on the vehicle sequencing
problem for Chrysler. Unfortunately, there is no published information about
this research beyond a press release [8] and a set of presentation slides [2]. The
problem they address also has distribution and change-over constraints similar
the problem addressed in this paper. Their solution decomposes the problem
into smaller sub-problems on which it performs backtracking search, attempting
to satisfy constraints with the highest priorities first.

2 The Problem Domain

The manufacturing plant that we study produces approximately 36,000 vehicles
in a month on two assembly lines and the sequencing is done once per month.
The input to the problem is a list of orders (an order is a quantity of identical
vehicles) that need to be produced during that month, capacity values that
specify how many vehicles can be produced on each day on each assembly line,
and the user-specified constraints. As a first step, each order is split into several
smaller quantities of vehicles called lots such that the size of each lot is less than
or equal to 60 vehicles, called the batch size. The lots are then grouped together
into batches by putting together similar lots with sizes that add up to the batch
size (see Table 1(a) for an example). Each batch is assumed to take one hour of
time to produce on an assembly line. A typical problem instance has lots with
between one and 60 vehicles, and batches with between one and ten lots, with
the majority of batches having only one lot. It is important to note that after
batching, the lots are not sequenced in a batch and thus sequencing actually
occurs at the lot level.

The lots and batches have attributes. Some attributes are common to all
problem instances and others are user-definable and thus specific to a problem
instance. Common attributes include the assembly lines that a lot can be pro-
duced on, the date a lot must be produced after (line-on date), and the date
a lot must be produced by (line-off date). User definable attributes are either
selected from a set of basic attributes such as vehicle model, exterior colour,
type of engine, and type of transmission; or are constructed from these basic
attributes by Cartesian-product. A batch’s attribute values are taken from the
attribute values of its lots. Each attribute has a different method for deriving
the batch attribute value from the lot values when the lot values differ.

The capacity values specify the number of batches that can be produced on
each assembly line on each day. If no vehicle production is desired on a particular
day, then the capacities for that day are zero. The capacities are assigned such
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that the sum of all the capacities for each day and assembly line equals the
total number of batches that need to be produced for the month. Hence, there
is no excess capacity. A day’s production on an assembly line is sub-divided into
consecutive intervals of time called slots which have a fixed start time and a
duration of one hour (since each batch is assumed to take one hour of time to
produce). In a final sequence, every slot is assigned one and only one unique
batch. A typical problem instance consists of two assembly lines each with 20
days of non-zero capacities. Each of these daily capacities is approximately fifteen
batches, which gives a total capacity of 600 batches or 36,000 vehicles.

Each problem contains constraints that restricts which sequences are accept-
able. Each constraint is over one or more slots, each slot taking a value from the
set of all batches. The constraints can be classified as either a batch constraint
or a lot constraint. Lot constraints rely on lot attributes, and influence the se-
quencing of lots and hence the sequencing of batches. Batch constraints rely on
batch attributes and influence the sequencing of batches with no concern for the
sequencing of lots within a batch. Constraints can also be classified as either
soft or hard. A hard constraint cannot be violated, while a soft constraint can
be violated but imposes a penalty value for each violation. Each soft constraint
has a penalty value that is given as part of the input of the problem; the higher
the penalty value, the more undesirable the violation.

There are eight constraint types. Six of the constraint types—the assembly
line, line-on and line-off, even distribution, distribution exception, batting order,
and all-different—define hard, batch constraints. The remaining two constraint
types—the run-length and change-over—define soft, lot constraints. We now
describe these constraints types in detail.

Assembly Line. The manufacturing plant contains two assembly lines. Because
of unique equipment, some vehicles can only be assembled on one of the lines,
while others can be assembled on either line. If a batch contains a lot that can
only be assembled on one of the assembly lines, then the batch must be assembled
on that assembly line. There is an assembly line constraint over each slot. Since
each slot belongs to an assembly line, only batches that can be made on that
assembly line can be assigned to the slot.

Line-On and Line-Off. Each vehicle that is ordered must be produced some-
time during the month. However, because of part availability or shipping dead-
lines, some orders have more stringent scheduling requirements. For this reason,
each lot has a line-on and line-off day. A lot must be produced on or after its
line-on day, and on or before its line-off day. A batch’s line-on day is the max-
imum line-on day of its lots and its line-off day is the minimum line-off day of
its lots. There is a line-on and line-off constraint over each slot.

Even Distribution. An assembly line should produce a variety of different
types of vehicles each day and the production of similar types of vehicles should
be spread evenly over the month. Reasons for this include maintaining workers
skills for making all types of vehicles, part availability, and producing certain
amounts of each type of vehicle prior to any unexpected assembly line shutdown.
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Table 1. (a) Example lots and their attributes. Lots are grouped together into batches
of size 60. The attributes of a single-lot batch are the same as those of its lot. The
derived attributes of the multi-lot batches are shown underlined. (b) Example even
distribution values. (c) One possible sequencing of the batches and lots over two days.

(a) (b)

Lot Line Line Exterior Sun
Lot Batch Size On Off Model Colour Roof
L01 B01 60 1 2 M1 Blue Y
L02 B02 20 1 2 M1 Red Y
L03 B02 40 1 1 M1 Red N
L04 B03 10 1 2 M2 Green Y
L05 B03 20 2 2 M2 Red N
L06 B03 30 1 2 M2 Blue Y
L07 B04 10 1 2 M3 Red N
L08 B04 10 1 2 M3 Green Y
L09 B04 10 1 2 M3 Red Y
L10 B04 30 1 2 M3 Green N
L11 B05 60 1 2 M1 Green N
L12 B06 60 1 2 M1 Blue Y
L13 B07 60 2 2 M1 Blue Y
L14 B08 60 1 1 M1 Blue N
L15 B09 60 2 2 M1 Green N
L16 B10 60 1 2 M2 Red Y
L17 B11 60 1 1 M2 Red Y
L18 B12 60 1 2 M2 Green N
L19 B13 60 1 2 M3 Red N
L20 B14 60 1 2 M3 Green Y

Attribute Day 1 Day 2
M1-Y 2 1
M1-N 2 2
M2-Y 1 2
M2-N 1 0
M3-Y 0 1
M3-N 1 1

(c)

Day Slot Batch Lots
1 1 B06 L12

2 B08 L14
3 B01 L01
4 B02 L02, L03
5 B11 L17
6 B12 L18
7 B04 L08, L07, L09, L10

2 1 B05 L11
2 B09 L15
3 B07 L13
4 B10 L16
5 B03 L05, L04, L06
6 B14 L20
7 B13 L19

The even distribution constraint spreads the batches by specifying the number
of batches with a particular attribute value that must be produced on each
day. There is an even distribution constraint for each production day and the
constraint is over all of the slots that belong to that day.

Distribution Exception. Sometimes an even distribution is inappropriate. For
example, when a new model year is introduced, production teams need time to
learn new procedures and the distribution of new models should be restricted
so that fewer are produced early in the month. To do this, a distribution ex-
ception constraint specifies a minimum and maximum number of batches with a
particular attribute value that can be produced on each day during a specified
period of days in the month. There is a distribution exception constraint for each
production day and the constraint is over all of the slots that belong to that day.

Batting Order. Each day, a similar sequencing pattern should be followed
on each assembly line. One reason for this is to sequence simple vehicles at the
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beginning of the day and gradually progress to more difficult vehicles. This allows
the production teams to warm up before building more complicated vehicles. To
do this, batting order constraints are defined on user-specified attributes and on
user-specified orderings of those attributes’ values. Specifically, on each day, a
batch must be produced before another batch if its attribute value is ordered
before the attribute value of the other batch. There is a batting order constraint
between each pair of consecutive slots that are on the same day.

All-Different. A constraint is needed to ensure that every batch appears exactly
once in any sequence. The all-different constraint is defined over all the slots.

Run-Length. Each day, it is desirable that certain attribute values are not
repeated too often. Avoiding monotony of an attribute value can improve the
effectiveness of production and quality inspection teams, and avoid part supply
problems. A run-length constraint is a soft constraint that incurs a penalty when-
ever the number of consecutive vehicles with a particular attribute value exceeds
a specified limit called the run-length. The run-length constraint is applied to
consecutive slots. One penalty value is counted for each lot that exceeds the run-
length value. Typical instances have around five different run-length constraints
defined and the penalty values for these constraints range between ten and 300.

Change-Over. In a sequence, transitions from one lot attribute value to another
lot attribute value may be undesirable. For instance, painting a white vehicle
immediately after a red one is undesirable because the vehicle may turn out
pink. A change-over constraint is a soft constraint that incurs a penalty value
whenever an undesirable transition occurs. The change-over constraint is applied
to consecutive slots. It relies on two user-specified attributes, called the former
and the latter attributes, to evaluate a transition between two sequenced lots.
Typical instances have around forty different change-over constraints defined
and the penalty values for these constraints range between one and 100.

A solution to the vehicle assembly line sequencing problem consists of an
assignment of batches to slots and a sequencing of the lots within batches such
that all the hard constraints are satisfied. The quality of a solution is measured
by the total penalty values that are incurred by violations of the soft constraints.
The lower the total penalty values, the higher the quality of the solution.

Example 1. Table 1(a) shows an example set of lots and their grouping into
batches. The batches are to be sequenced on one assembly line over two days,
where each day has a capacity of seven batches. Suppose we define the following
constraints. An even distribution constraint is defined on the Cartesian-product
of the model and sun-roof attributes and the distribution values are as listed in
Table 1(b). To illustrate, there are three batches with attribute values Model
“M1” and Sun-roof “Yes” and the distribution values specify that two of these
batches must be sequenced on the first day and one batch must be sequenced
on the second day. A distribution exception constraint is defined on the Exterior
Colour attribute value “Green” for the first of the two days with a minimum value
of one batch and a maximum value of two batches. A batting order constraint is
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defined on the attribute Model specifying that on each day, M1 batches should
be produced first, followed by M2 batches, and then M3 batches. A run-length
constraint is defined on the Exterior Colour attribute value “Red” with a run-
length value of 120 vehicles and a penalty value of 200. Thus, sequencing lots L16,
L17, and L19 consecutively would incur a penalty value of 200. A change-over
constraint is defined on the Exterior Colour attribute with a penalty value of 100.
The former attribute value is “Red” and the latter attribute value is “NOT Red”,
where “NOT Red” means any colour except “Red”. Thus, sequencing lot L17
followed by L18 would incur a penalty value of 100. Table 1(c) gives one possible
sequencing of the batches and lots. The change-over constraint is violated three
times (L17 → L18, L09 → L10, and L05 → L04) and the run-length constraint
is not violated at all for a total penalty value of 300.

3 Solution Techniques

Since the problem is large, we solved the constraint-based model approximately
rather than optimally. We describe three algorithms for solving the vehicle se-
quencing problem: a local search method, a backtracking method, and a branch
and bound method. All of the algorithms used the following two techniques for
simplifying the problem. First, the overall problem was split into equal sized
sub-problems by placing, for a particular assembly line, a specified number of
consecutive production days in each sub-problem. To determine which batches
should go with which sub-problem, we used the solution found by the greedy
search algorithm and assigned a batch to a sub-problem if its placement within
the solution fell on one of those days. The sub-problems were then solved in or-
der of the days they contain. Since soft constraint violations can occur between
sub-problems, after a sub-problem is solved, the batch that was sequenced last
is added to the beginning of the next sub-problem. Second, the sequencing of
batches and the sequencing of the lots within batches were decoupled and done
in stages rather than simultaneously. In stage one, the lots within each batch
were sequenced without consideration of the other batches and then in stage
two, the batches were sequenced with the lots considered fixed. The sequencing
of the lots was done either by using the solution provided by the greedy search
algorithm, or by optimizing the lot sequence according to the soft constraints
using a simple generate and test procedure.

Local search. Local search is a general approach to solving combinatorial op-
timization problems (see [1] for an overview). To apply local search to the ve-
hicle assembly line sequencing problem, we need to define a cost function and
a neighborhood function. The cost function takes as its input a solution to the
hard constraints and returns the total number of penalty values incurred by the
soft constraints. Thus, all the soft constraints are moved into or are represented
by the cost function. There are many possible ways to define a neighborhood
function. In general, the way that the neighborhood function is defined influ-
ences the quality of the solutions that a local search algorithm finds and the cost
of searching the solution space. In our experiments, we define the neighborhood
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of a solution to consist of any solution where two variables’ values have been
swapped and no hard constraint is violated.

The local search algorithm we devised is a simple hill-climbing algorithm.
Our algorithm begins with an initial solution that satisfies all of the hard con-
straints. The default initial solution is the solution provided by the greedy search
algorithm. Of the solutions in the neighborhood, the solution that reduces the
total penalty value the most is selected. This process is repeated until no solu-
tion can be found in the current neighborhood that improves on the quality of
the current solution.

Backtracking with relaxation and restart. Standard backtracking requires
the satisfaction of all constraints. However, in a problem that contains soft
constraints, it is common that some of the soft constraints are not satisfied.
Two modifications to make backtracking applicable are possible (see [12] for an
overview). The optimistic approach first searches for a solution satisfying all of
the constraint and then iteratively removes or relaxes constraints—the weak-
est first—until a solution is found. The pessimistic approach first searches for
a solution satisfying the strongest constraints and then iteratively adds more
constraints—the strongest first—until no solution is found. We chose to pursue
an optimistic or relaxation approach.

For our relaxation approach, each soft constraint’s instances that belong
to the same day and assembly line are grouped together into a parameterized
hard constraint. Since soft constraint violations can occur between lots that
are sequenced on different days, the last slot of the previous day is included in
each of these parameterized constraints. Let p represent the parameter for an
instance of a parameterized constraint. For a run-length constraint p represents
the maximum run-length that can occur on the day. For a change-over constraint
p represents the maximum number of change-over violations that can occur. If
more than p violations occur, then the parameterized change-over constraint is
not satisfied. This method has advantages over simply removing selected soft
constraints from the problem as it decreases the number of possible selections
that need to be made and leaves more decision power to the search algorithm.

The backtracking algorithm begins with each parameterized change-over con-
straint initialized with a value of zero and each parameterized run-length con-
straint initialized with the run-length value of the constraint. As the backtracking
algorithm attempts to solve the problem a count is kept of how many times each
parameterized constraint fails. Associated with each parameterized constraint
is a failure limit that is proportional to its penalty value. If any parameterized
constraint fails more often than its failure limit the search stops. If the search
stopped without finding a solution, a parameterized constraint is chosen to be
relaxed by selecting a constraint with the smallest penalty value that failed at
least once. The chosen constraint is relaxed by adding a value to its parameter.
For a change-over constraint, its parameter is incremented by one. For a run-
length constraint, its parameter is incremented by the batch size, increasing the
run-length by sixty vehicles. The backtracking algorithm is then restarted, and
the relaxation and restart processes is continued until a solution is found.
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The efficiency of the backtracking algorithm was improved by using variable
and value ordering heuristics and by reducing the search space by constraint
propagation (see [4] for an overview). The variable ordering selects the variable
belonging to the earliest day with ties broken by smallest domain size. The value
ordering is based on the greedy search solution. For each variable, the value
assigned in the greedy search solution is placed first in the variable’s domain.
To achieve a high level of propagation with limited computation, specialized
propagators, which take advantage of the constraint’s structure, were devised
for the all-different constraint and the distribution constraints.

Branch and bound. To apply branch and bound search to the vehicle assembly
line sequencing problem, we need to define a cost function and a function to
provide a lower bound on the cost of any partial solution (see [5] for an overview).
As with the local search approach, the cost function takes as its input a solution
to the hard constraints and returns the total number of penalty values incurred
by the soft constraints. The lower bound function takes as its input a partial
solution to the hard constraints and returns the total number of penalty values
incurred by the batches that have been sequenced so far.

The algorithm begins with an upper bound on the cost of an optimal solution
and tightens the bound until no solution is found. The upper bound is initialized
to be the cost of the solution returned by the greedy search algorithm. After
backtracking finds a solution, we take the total penalty value for the solution,
reduce it by the smallest constraint penalty value in the problem instance (a
value of one for the problem instances we examine), and set this as the new
bound value. The branch and bound algorithm then continues, and backtracks
whenever the lower bound on the cost of a partial solution exceeds the current
bound. If it finds a solution with the current bound value, we reduce the bound
value again. This process is continued until no solution can be found. In this
case, the last solution found is an optimal solution.

For the branch and bound algorithm, the variable ordering was fixed to be
the ordering of the slots in time. This was chosen to simplify the way the lower
bound function was implemented. The value ordering and constraint propagation
techniques were the same as described for the relaxation approach.

4 Evaluation

In this section, we present the results of applying the three solution methods to
six real-world problem instances. Each problem instance represents a month’s
worth of orders for a vehicle manufacturing plant with two assembly lines. We use
the quality of the solutions produced by the existing system developed by Tigr-
Soft as our base of comparison. The existing system, which is based on greedy
search, took about 15 seconds to solve each of the instances (all experiments
were run on 450 MHz Pentium III’s with 256 Megabytes of memory).

Table 2 summarizes the results for the three methods. In all of the reported
results, each problem instance was divided into one day sub-problems. We also
examined the effect of dividing into two and three day sub-problems and found
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Table 2. (a) Total penalties and (b) percentage improvement over greedy search of
hill climbing methods, backtracking methods, and branch and bound methods with a
decomposition into sub-problems of a single day. For branch and bound a time limit
per sub-problem of either 2 hours or 1 minute was used.

(a)

Greedy Hill climbing Backtracking Branch and bound
2 hours 1 minute

# GS HC HC-R HC-O RR RR-N RR-O BB BB-O BB BB-O
1 8,018 7,036 7,623 7,055 7,337 8,718 7,721 7,002 6,925 7,002 6,925
2 5,042 4,579 5,059 4,470 4,640 5,353 4,549 4,528 4,403 4,528 4,399
3 3,412 3,347 3,543 3,409 3,357 3,441 3,443 3,306 3,348 3,306 3,348
4 2,498 2,233 2,269 2,174 2,308 2,532 2,265 2,206 2,137 2,218 2,145
5 2,956 2,885 2,996 2,605 2,883 3,069 2,618 2,762 2,479 2,762 2,485
6 2,818 2,560 2,605 2,577 2,602 3,028 2,625 2,489 2,500 2,489 2,500

(b)

Hill climbing Backtracking Branch and bound
2 hours 1 minute

# HC HC-R HC-O RR RR-N RR-O BB BB-O BB BB-O
1 12 5 12 8 −9 4 13 13 14 14
2 9 0 11 8 −6 10 10 10 13 13
3 2 −4 0 2 −1 −1 3 3 2 2
4 11 9 13 8 −1 9 12 11 14 14
5 2 −1 12 2 −4 11 7 7 16 16
6 9 8 9 8 −7 7 12 12 11 11

that for each of the three methods, the CPU time increased (sometimes dramat-
ically) but the quality of the solutions did not change significantly. It appears
that the even distribution constraint significantly reduces the possibility of im-
proving the solution by solving multiple days at a time. For all of the problem
instances examined, the even distribution constraint was defined on an attribute
that contained more than 200 attribute values and many attribute values only
had one or two batches associated with them. Since the even distribution con-
straint defines for each day and attribute value the number of batches with the
attribute value that can be assigned to the day, many days did not share batches.
Thus when solving multi-day problems of two or three days, it was unlikely that
the days within a sub-problem would share batches.

For the local search algorithms, the sequencing of lots within a batch was
fixed to be the sequence of the lots within the solution determined by the greedy
search (HC and HC-R) or was fixed to be the optimized sequence of the lots
(HC-O). The initial solution given to the hill-climbing algorithm to improve
upon was either the sequencing of the batches provided by the greedy search
algorithm (HC and HC-O) or a random sequencing of the batches (HC-R). The
HC and HC-O hill climbing algorithms took between two and three minutes to
solve each of the instances; the HC-R algorithm took on average double the CPU
time. We note that when a random initial solution was used, the results were
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poorer. These results indicate the importance of a good initial solution when
using a hill-climbing method on the problem.

For the backtracking algorithms that used a relaxation and restart approach,
the failure limits for each soft constraint were set by multiplying each constraint’s
penalty value by 200 (the value chosen is somewhat arbitrary; we have verified
that choosing a different multiplicative value does not materially change the
conclusions that we draw from our study). The sequencing of lots within a batch
was fixed to be the sequence of the lots within the solution determined by the
greedy search (RR and RR-N) or was fixed to be the optimized sequence of the
lots (RR-O). The approaches RR and RR-O used a value ordering that was based
on the greedy search solution. Each slot’s domain values were ordered by placing
the batch that was assigned to the slot in the greedy search solution first in the
slot’s domain. As well, since the choice of which constraint to relax next may
not be perfect, after a sub-problem was solved with the backtracking algorithm,
the sub-problem solution was compared with the greedy search solution and
the sub-problem solution with the lowest total penalty value was selected. The
algorithms took between five and fifteen minutes to solve each of the instances.
We note that when the value ordering and the best solution selection process was
removed (RR-N) the quality of the solutions decreased significantly. The value
ordering appears to give the backtracking algorithm a good solution to build on.

For the branch and bound algorithms, the sequencing of lots within a batch
was fixed to be the sequence of the lots within the solution determined by the
greedy search (BB) or was fixed to be the optimized sequence of the lots (BB-
O). Time limits were set on how much CPU time could be spent on each sub-
problem. If the algorithm had not completed within the time limit, the best
solution found so far was used. We report the results for time limits of two hours
and of one minute. When the time limit per sub-problem was two hours, four
of the six instances had all of their sub-problem solutions proven optimal. The
other two instances had in total only five sub-problems with potentially sub-
optimal solutions. These five sub-problem solutions may in fact be optimal, but
they were not proven so within the time limit. The total CPU time required
to solve an instance when the time limit per sub-problem was two hours varied
significantly, ranging between five minutes and fourteen hours. When the time
limit per sub-problem was reduced from two hours down to one minute, only one
problem instance’s total penalty values slightly increased. However, although
almost all of the solutions found were of the same quality, few of these solutions
were proven optimal within the reduced time limit. On these instances finding an
optimal solution to a sub-problem was relatively easy, but proving its optimality
was often hard. The total CPU time required to solve an instance when the time
limit per sub-problem was one minute varied between five and 25 minutes.

5 Conclusion

We introduced a real-world optimization problem that we modeled and solved
using constraint-based approaches. We also demonstrated the importance of de-
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composing the problem into one-day sub-problems. We argued that because of
the tightness of the even distribution constraint such a decomposition had lit-
tle effect on the quality of the overall solution. For nearly all of these one-day
sub-problems, we proved optimal solutions within a reasonable amount of time
using the branch and bound technique. In even less time, the branch and bound
method was able to find nearly identical results without proving optimality for
many sub-problems. The local search method was also able to find relatively
good solutions. Given the simplicity of this algorithm, it is likely that even bet-
ter results could be found with a local search approach. The relaxation approach
was the least successful of the three algorithms. Improving this approach is likely
possible, but the usefulness of such an improvement is questionable due to the
quality of the solutions obtained by the other two simpler algorithms.

In the preliminary stages of this research, we established with TigrSoft the
criteria by which our results would be judged a “real-world” success. It was de-
termined that solutions with a 5% reduction in penalty values that could be
found in less than 30 minutes would be considered significant. All three algo-
rithms were capable of finding solutions to the six problem instances within 30
minutes. For four of the six problem instances we were able to obtain more than
a 5% improvement with any of the three solution methods. For the best method,
a branch and bound algorithm with a decomposition into one-day sub-problems
and a one minute time limit on each sub-problem, we obtained improvements
ranging between 2% and 16% and averaging 11.6% over the existing system.
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Abstract. In fast-paced software projects, engineers don’t have the time
or the resources to build heavyweight complete descriptions of their soft-
ware. The best they can do is lightweight incomplete descriptions which
may contain missing and contradictory information. Reasoning about in-
complete and contradictory knowledge is notoriously difficult. However,
recent results from the empirical AI community suggest that randomized
search can tame this difficult problem. In this article we demonstrate the
the relevance and the predictability of randomized search for reasoning
about lightweight models.

1 Introduction

Software engineering (SE) faces a dilemma which might be resolved by artificial
intelligence (AI) research. However, before SE practitioners accept AI methods,
they must be satisfied as to the relevance and the predictability of AI solutions.

The dilemma of current SE research is that much of that research is out of
step with much of current industrial practice. At the recent International Sympo-
sium on Software Predictability (San Jose, California, 2000), a keynote address
from Sun Microsystems shocked the researchers in the audience: few of the tech-
niques endorsed by the SE research community are being used in fast-moving
dot-com software companies. For such projects, developers and managers lack
the resources to conduct heavyweight software modeling; e.g. the construction
of complete descriptions of the business model1 or the user requirements. Yet
such heavyweight software modeling is very useful. Complete models of (e.g.)
specifications can be used for a variety of tasks. For example, test cases could
be auto-generated from the specification. Also, the consequences of conflicts be-
tween the requirements of different stakeholders could be studied. Further, we
can automatically test that important temporal constraints hold over the life-
time of the execution of the specification. Lastly, model-based diagnosis could
be used to localize errors.
1 For the the purposes of explaining this work to an SE audience, we will adopt widely

used terminology. Hence, we will say business “model” when, strictly speaking, we
should say business “theory”.
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To better support the fast pace of modern software, we need a new genera-
tion of lightweight software modeling tools. Lightweight software models can be
built in a hurry and so are more suitable for the fast-moving software companies.
However, software models built in a hurry can contain incomplete and contra-
dictory knowledge. The presence of contradictions in the lightweight theories
complicates the above useful tasks. Suppose some inference engine is trying to
build a proof tree across a lightweight software model containing contradictions.
Gabow et.al. [4] showed that building pathways across programs with contradic-
tions is NP-complete for all but the simplest software models (a software model
is very simple if it is very small, or it is a simple tree, or it has a dependency
networks with out-degree ≤ 1). No fast and complete algorithm for NP-complete
tasks has been discovered, despite decades of research.

Empirical results from AI offers new hope for the practicality of NP-complete
tasks such as reasoning about lightweight software models. A repeated and ro-
bust empirical result (e.g. [14, 1]) is that theoretically slow NP-complete tasks
are only truly slow in a narrow phase transition zone between under-constrained
and over-constrained problems. Further, it has been shown empirically that in
both the under/over-constrained zones, seemingly naive randomized search al-
gorithms execute faster than, and nearly as completely, as traditional, slower,
complete algorithms. Much of that research is based on conjunctive normal forms
(e.g. [14]) but some evidence exists that the result holds also for horn-clause
representations [10, 9]. These empirical results suggest that we might be able
to implement the processing of lightweight software models using randomized
search.

SE practitioners may well rebel at the prospect of applying randomized search
to their applications. One issue is the relevance problem. With the exception of
database programmers, it is not usual practice to view a (e.g.) “C” program as a
declarative search space that can be explored this way or that way. Another issue
is the predictability problem. Nondeterministic programs are usually not accept-
able to an SE audience. For example, the SE guru Nancy Leveson clearly states
“Nondeterminism is the enemy of reliability” [6]. If random search algorithms
generate significantly different conclusions each time they run, then they would
be unpredictable, uncertifiable, and unacceptable to the general SE community.

The goal of this article is to solve the relevance and predictability problems.
§2 discusses the relevance problem and argues that declarative representations
are common in SE, even when dealing with procedural programs. We will further
argue that these declarative representations are compatible with NAY0 graphs:
a directed, possibly cycle graph containing No-edges, And-nodes, Yes-edges, and
Or-nodes. §3 discusses the predictability problem in the context of NAYO graphs.
That discussion formalizes the predictability problem in terms of multiple world
reasoning. If very different conclusions are found in the worlds of belief extracted
from NAYO graphs, then we cannot predictably assert what conclusions hold.
§4 builds and explores a mathematical model that predicts the likelihood of
multiple worlds. This section concludes that randomized set-covering abduction,
the odds of multiple worlds are very small. Hence, predictability is not a major
concern.
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Fig. 1. Methods of generating NAYO graphs.

2 The Relevance Problem

Figure 1 shows a variety of commonly used representations in SE. AI search is
relevant to SE if these representations can be mapped into declarative represen-
tations. There are many examples of such a mapping in the literature, a sample
of which is offered in this section.

Before beginning, we note that each of the mappings described potentially
confound the predictability problem. Some information is lost when mapping
down into low-level declarative representations. Typically, the information lose
removes certain constraints which means that more inferences are possible in
the abstracted form than in the non-abstracted form. Fortunately, in the next
section, we show that the predictability problem is less of an issue that we might
expect.

Common representations used in SE are object-oriented specification doc-
uments and procedural code. Whittle and Schumann have shown that specifi-
cations containing class diagrams and scenario diagrams can be automatically
converted to finite state machines [15]. Also, Corbett et.al have shown that code
written in some languages can be converted into finite state machines [3]. For
example, the BANDERA system automatically extracts (slices) the minimum
portions of a JAVA program’s bytecodes which are relevant to proving particu-
lar properties models. These minimal portions are then converted into the finite
state machine required for automatic formal analysis.

Before generating procedural code, software engineers may build requirement
documents. Mylopoulos, Chung, and Yu express system requirements using an
and-or structure called “soft goals” [12]. “Soft goals” have been mapped into
horn-clause form by Menzies, Easterbrook, et.al. [9]. Horn clauses are a declar-
ative representation that take the form

Goal if SubGoa11 and SubGoal2 and ...
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which, in a Prolog notation, we would write as goal :- subGoa11,
subGoal2,... If there exists more than one method of demonstrating some
Goal, then each method is a separate clause.

Sometimes software engineers describe business rules in some rule-based lan-
guage. These rules can be mapped into horn-clauses using standard partial eval-
uation techniques [13]. At other times, software engineers build discrete event
simulations of their systems in some sort of compartmental modeling frame-
work2. Menzies and Compton offered an declarative (abductive) semantics for
executing incomplete compartmental models [8].

Finite state machines are a commonly used representation, particularly for
real-time systems. Finite-state diagrams contain transitions between states.
Transitions may be conditional on some guard. States may contain nested states.
To translate state machines to horn-clauses, we create one variable for each state,
then create one clause for each transition from state S1 to S2. Each clause will
take the form s2 :- s1, guard where guard comes from the conditional tests
that activate that transition. If a state S1 contains sub-states S1.a, S1.b,. . . then
create clauses of the form s1a :- s1 and s1b :- s1, etc.

Horn-clauses can be easily reduced to NAYO graphs. A NAYO graph is a
finite directed graph containing two types of edges and two types of nodes. Or-
nodes store assignments of a single value to a variable. Only one of the parents
of an or-node need be reached before we visit the or-node. And-nodes model
multiple pre-conditions. All the parents of an and-node must be reached before
this node is visited. No-edges represent illegal pairs of inferences; i.e. things we
can’t believe at the same time. For example, we would connect diet(light) and
diet(fatty) with a no-edge. Yes-edges represent legal inferences between or-
nodes and and-nodes. Figure 2 shows some sample horn clauses and its associated
NAYO graph.

diet(fatty).
diet(light).
happy :- tranquillity(hi),

; rich,healthy.
healthy :- diet(light).
satiated :- diet(fatty).
tranquillity(hi) :-

satiated
; conscience(clear).

happy tranquility(hi)

diet(light)

and1 rich

healthy

diet(fatty)
no

yesyes

yesyes

yes

satiated yes

yes

conscience(clear)

yes

Fig. 2. Some ground horn clauses (left) converted to a NAYO graph (right).

2 Compartmental models utilize the principal of conservation of mass and assume that
the sum of flows of substance in and out of a compartment must equal zero. Flows
are typically modeled using a time-dependant exponential function since the rate of
flow is often proportional to the amount of stuff in the compartment [7].
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We focus on NAYOs for three reasons. Firstly, it is merely a graphical form a
common representation: negation-free horn clauses. Secondly, and related to the
first point, a range of representations can be expressed as NAYOs. Thirdly, there
exist average case search results for NAYO graphs (see below). Any other repre-
sentation with these three properties might be a suitable alternative framework
for our analysis.

At first glance, it might appear that we can simply emulate the execution
of a program by building proof trees across the NAYO graph. For example, we
could mark some nodes as “inputs” then grow trees across the NAYO graph
whose leaves are the inputs and whose root is some reached part of the program.
However, we can’t reckless grow proof trees across a NAYO: as a proof tree
grows it should remain consistent (i.e. must not contain two nodes connected by
a no-edge).

Proving a goal in a NAYO graph means recursively exploring all edges that
arrive at that node. A randomized search would explore these edges in an order
chosen randomly. HT0 is such a random search algorithm for NAYO graphs [10].
When HT0 reaches a literal, it retracts all other literals that might contradict this
literal. The algorithm is very fast since it removes the Gabow et.al precondition
for NP-completeness (any node that contradicts the nodes already in the proof
tree). The random order in which HT0 explores the NAYO graphs selects which
literals will be explored. Hence, HT0 repeats its processing several times. After
trying to prove all it’s goals in this random way, HT0 re-asserts the retracted
literals and executes another “try” to prove all its goals. This process terminates
when algorithm detects a plateau in the largest percentage of reachable goals
found in any “try”.

3 NAYO Graphs and Predictability

NAYO graphs offer a common declarative reading for a range of representations
(e.g. those shown in Figure 1). At the NAYO level it is easy to show that the
heuristic inferences made by random search may not be repeatable and hence
not predictable.

Consider the three proofs HT0 might generate to prove happy in Figure 2.

Proof1 : happy← tranquility(hi)← conscience(clear)
Proof2 : happy← tranquility(hi)← satieted← diet(fatty)

Proof3 : happy← and1

{← rich
← healthy← diet(light)

Some of these conclusions made by these proofs are not categorical conclu-
sions. For example, our belief in healthy is contingent on accepting Proof3 and
not Proof2 (Proof3 is incompatible with Proof2 since these two proofs require
different diets). In the general case, a random search engine like HT0 will find
only some subset of the possible proofs, particularly if it is run for a heuristi-
cally selected time interval. That is, a random search engine may not repeatedly
realize that (e.g.) healthy is an uncertain conclusion.
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Clearly for tiny systems like Figure 2 generating only a handful of proofs,
the conclusions from random search are unpredictable and our SE colleagues are
wise to reject it. However, for such tiny systems, manual analysis will suffice. The
automatic processing of NAYO graphs only gets interesting for larger systems. In
such large systems, the goal nodes are a small subset of the total nodes. Further,
as we show below, there emerges average case properties relating to our ability
to quickly probe all the possible contingencies from a system. The sequel present
these average case properties using the terminology of Menzies’ prior work on
set-covering abduction [8] (for notes on other abductive frameworks, see [2, 5]).

Given a model such as Figure 2 and a goal such as happy, HT0 builds
proof trees to those goals; e.g. Proof1. . .P roof3. Anything that has not been
asserted as a fact is an assumption. No proof can contain mutually exclusive as-
sumptions or contradict the goal; i.e. assuming ¬happy is illegal. The generated
proofs should be grouped together into maximal consistent subsets called worlds.
Our example generates two worlds: World1= {Proof1, P roof3} and World2=
{Proof1, P roof2}.

A world contains what we can conclude from NAYO inference. A goal is
proved if it can be found in a world. In terms of multiple world reasoning, the
predictability problem can be formalized as follows:

Random search is unpredictable when it does not generate enough worlds
to cover the range of possible conclusions.

Note that this is a weak objection if it can be shown that the number of
generated worlds is not large. This will be our argument below.

4 Average Number of Generated Worlds

Assumptions can be categorized into three important groups, only one of which
determines how many worlds are generated. Some assumptions are dependant
on other assumptions. For example, in Proof3, the healthy assumptions de-
pends fully on diet(light). In terms of exploring all the effects of different
assumptions, we can ignore the dependant assumptions. Another important cat-
egory of assumptions are the assumptions that contradict no other assump-
tions. These non-controversial assumptions are never at odds with other as-
sumptions and so do not effect the number of worlds generated. In our exam-
ple, the non-controversial assumptions are everything except diet(light) and
diet(healthy). Hence, like the dependant assumptions, we will ignore these
non-controversial assumptions. The remaining assumptions are the controver-
sial, non-dependant assumptions or funnel assumptions. These funnel assump-
tions control how all the other assumptions are grouped into worlds of belief.
DeKleer’s key insight in the ATMS research was that a multi-world reasoning
device need only focus on the funnel3 When switching between worlds, all we
3 DeKleer called the funnel assumptions the minimal environments. We do not adopt

that terminology here since DeKleer used consistency-based abduction while we are
exploring set-covering abduction here. For an excellent discussion that defines and
distinguishes set-covering from consistency-based methods, see [2].
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need to resolve is which funnel assumptions we endorse. Continuing our example,
if we endorse diet(light) then all the conclusions in World2 follow and if we
endorse diet(healthy) then all the conclusions in World1 follow.

Proofs meet and clash in the funnel. If the size of the funnel is very small,
then the number of possible clashes is very small and the number of possible res-
olutions to those clashes is very small. When the number of possible resolutions
is very small, the number of possible worlds is very small and random search
can quickly probe the different worlds of beliefs (since there are so few of them).
Hence, if we can show that the average size of the funnel is small, then we can
quickly poll the range of possible conclusions from our NAYO graphs.

There are numerous case studies suggesting that generating a few worlds
(picked at random) adequately samples the space of possibilities that would be
found after sampling a much larger number of worlds. Williams and Nayak found
that a locally guides conflict resolution algorithm performed as well as the best
available ATMS algorithm [16]. Menzies, Easterbrook et.al. report experiments
comparing random world generation with full world generation. After millions
of runs, they concluded that the random world generator found almost as many
goals in less time as full world generation [9]. In other work, Menzies and Michael
showed that the maximum percentage of reachable goals found by HT0 plateaus
after a small number of tries [10]. These case studies are consistent with the claim
that (1) the total number of worlds is usually very small, hence (2) average funnel
size is not large. In order to test if this claim generalizes beyond these isolated
case studies, we developed the following mathematical model [11]. Suppose some
goal can be reached by a narrow funnel M or a wide funnel N as follows:

a1−→M1
a2−→M2

. . .
am−→Mm






c−→ goali
d←−






N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Under what circumstances will the narrow funnel be favored over the wide fun-
nel? More precisely, when are the odds of reaching goali via the narrow funnel
much greater than the odds of reaching goali via the wide funnel? To answer
this question, we begin with the following definitions. Let the M funnel use m
variables and the N funnel use n variables. For comparison purposes, we express
the size of the wider funnel as a ratio α of the narrower funnel; i.e. n = αm.
Each member of M is reached via a path with probability ai while each member
of N is reached via a path with probability bi. Two paths exist from the funnels
to this goal: one from the narrow neck with probability c and one from the wide
neck with probability d. The probability of reaching the goal via the narrow
pathway is narrow = c

∏m
i=1 ai while the probability of reaching the goal via

the wide pathway is wide = d
∏n

i=1 bi.
Assuming that the goal is reached, then there are three ways to do so. Firstly,

we can reach the goal using both funnels with probability narrow.wide. Secondly,
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we can reach the goal using the narrow funnel and not the wider funnel with
probability narrow(1 − wide). Thirdly, we can reach the goal using the wider
funnel and not the narrow funnel with probability (1− narrow)wide. Let g be
probability of reaching goali which is the sum of the three probabilities; i.e.
g = narrow + wide− narrow.wide.

Given the goal is reached, then the conditional probabilities of reaching the
goali via two our funnels is:

P (narrow|g) =
narrow

narrow + wide− narrow.wide

P (wide|g) =
wide

narrow + wide− narrow.wide

Let R be the ratio of the odds4 of these conditional probabilities. Our pre-
condition for use of the narrow funnel is R > 1. More generally, using the narrow
funnel is much more likely if R is bigger than some threshold value t:

(

R =
(narrow)2 (1− wide)
(wide)2 (1− narrow)

)

> t (1)

4.1 Assuming Uniform Distributions

Assuming that ai and bi come from uniform probability distributions, then∑m
i=1 ai = 1 and ai = 1

m , so narrow = c
( 1

m

)m. Similarly, under the same
assumptions, wide = d

( 1
n

)n. Thus, by Equation 1 when t = 1, narrow funnels
are more likely when:

narrow2(1− wide) > wide2(1− narrow)

which we can rearrange to: (narrow−wide)(narrow+wide−narrow.wide) > 0.
This expression contains two terms, the second of which is always positive. Hence,
this expression is positive when narrow

wide > 1. We can expand this expression to:

narrow

wide
=

c
( 1

m

)m

d
( 1

n

)n

Recalling that n = αm, this expression becomes (αm)αmm−m > d
c

Consider the case of two funnels, one twice as big as the other; i.e. α = 2.
This expression can then be rearranged to show that narrow

wide > 1 is true when

(4m)m >
d

c
(2)

At m = 2, Equation 2 becomes d < 64c. That is, to access goali from the wider
funnel, the pathway d must be 64 times more likely than the pathway c. This
4 The odds of an event with probability P (x) is the ratio of the probability that the

event does/does not happen; i.e. P (X)
1−P (X)
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is not highly likely and this becomes less likely as the narrower funnel grows.
By the same reasoning, at m = 3, to access goali from the wider funnel, the
pathway d must be 1728 times more likely than the narrower pathway c. That
is, under the assumptions of this uniform case, as the wide funnel gets wider, it
becomes less and less likely that it will be used.

4.2 Assuming Non-uniform Distributions

To explore the case where
∑m

i=1 ai 6= 1 and
∑m

i=1 bi 6= 1 (i.e. the non-uniform
probability distribution case), we created and executed a small simulator many
times. The mean µ and standard deviation σ2 of the logarithm of the variables
ai, bi, c, d were picked at random from the following ranges: µ ∈ {1, 2, . . . 10};
spread ∈ {0.05, 0.1, 0.2, 0.4, 0.8}. µ and spread where then con-
verted into probability as follows: σ2 = spread ∗ µ; probability =
10−1∗normDist(µ,σ2). Next, m and α were picked at random from the
ranges: m ∈ {1, 2, . . . 10}; α ∈ {1, 1.25, 1.5, . . . 10}. R was then cal-
culated and the number of times R exceeded different values for t
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Fig. 3. 100000 runs of the funnel simulator. Y-axis
shows what percentage of the runs satisfies Equation 1.

is shown in Figure 3. As
might be expected, at t =
1, α = 1 the funnels are
the same size and the odds
of using one of them is
50%. As α increases, then
increasingly Equation 1 is
satisfied and the narrower
funnel will be preferred to
the wider funnel. The ef-
fect is quite pronounced.
For example, at α =
3, 82% of our simulated
runs, random search will be
10,000,000,000 times more
likely to favor narrow fun-
nels 1

3 the size of alternative
funnels.

In summary, in both the
uniform and non-uniform
case, random search engines such as HT0 will favor worlds with narrow funnels.
Since narrow funnels mean fewer worlds, we can now assure our SE colleagues
that it is highly likely that random search will sample the entire space of possible
conclusions.

5 Conclusion

Modern SE research urgently needs to address the issue of lightweight model-
ing in order to support current industrial practices. A central problem with the
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processing of lightweight models is that they are incomplete and contain contra-
dictions. AI research has been exploring theories containing contradictions for
decades. Random search is an AI technique that can explore very large models,
even when they contain contradictions.

Before the SE community accepts random search, it must be shown that
these techniques are relevant and predictable. We have shown that a wide range
of SE artifacts can be mapped into a declarative representation called NAYO
graphs. We have also shown that after the randomized generation of a small
number of worlds from the NAYO graphs, it is unlikely that very different goals
will be reachable if we randomly generated many more worlds. Hence, we assert
that (1) random search is both relevant and surprisingly predictable; and (2) SE
can use random search to support the lightweight modeling tools needed for the
current fast pace of software development.
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Abstract. Reinforcement learning techniques are increasingly being
used to solve difficult problems in control and combinatorial optimization
with promising results. Implicit imitation can accelerate reinforcement
learning (RL) by augmenting the Bellman equations with information
from the observation of expert agents (mentors). We propose two exten-
sions that permit imitation of agents with heterogeneous actions: feasi-
bility testing, which detects infeasible mentor actions, and k-step repair,
which searches for plans that approximate infeasible actions. We demon-
strate empirically that both of these extensions allow imitation agents
to converge more quickly in the presence of heterogeneous actions.

1 Introduction

Traditional methods for solving difficult control and combinatorial optimization
problems have made frequent recourse to heuristics to improve performance.
Increasingly, adaptive methods such as reinforcement learning have been used
to allow programs to learn their own heuristic or “value” functions to guide
search. The results in such diverse areas as job-shop scheduling [1] and global
optimization problems [2] have been quite promising. Typically, however, the
types of problems we would like to solve are similar to problems already solved
or to problems being pursued by others. We have therefore argued [3], as have
others, for a broader, sociologically inspired model of reinforcement learning
which can incorporate the knowledge of multiple agents solving multiple related
problems in a loosely coupled way.

Coupling between agents is typically achieved through communication, how-
ever, the lack of a common communication protocol or the presence of a com-
petitive situation can often make explicit communication infeasible. We have
demonstrated, using simple domains, that it is possible to overcome commu-
nication barriers by equipping agents with imitation-like behaviors [3]. Using
imitation, agents can learn from others without communicating an explicit con-
text for the applicability of a behavior [4]; without the need for an existing
communication protocol; in competitive situations where agents are unwilling to
share information; and even when other agents are unwilling to fulfill a teacher
role. The ability of imitation to effect skill transfer between agents has also
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been demonstrated in a range of domains [5,6,7,8,9,10]. These domains, how-
ever, have dealt with agents imitating other agents with similar actions. Our
goal is to extend imitation to allow agents to learn from expert agents (mentors)
with different action capabilities or inhabiting different environments. For ex-
ample, an agent learning to control a newly upgraded elevator group in a large
building could benefit from the adaptive learning of a prior controller on the
previous elevator system of that building.

Previously, we have showed that implicit imitation can accelerate reinforce-
ment learning (RL) by allowing agents to take advantage of the knowledge im-
plicit in observations of more skilled agents [3]. Though we did not assume that
the learner shared the same objectives as the mentors, we did rely on the fact
that actions were homogeneous: every action taken by a mentor corresponded to
some action of the learner. In this work, we relax this assumption and introduce
two mechanisms that allow acceleration of RL in presence of heterogeneous ac-
tions: action feasibility testing, which allows the learner to determine whether a
specific mentor action can be duplicated; and k-step repair, in which a learner
attempts to determine whether it can approximate the mentor’s trajectory.

Our work can be viewed loosely as falling within the framework proposed by
Nehaniv and Dautenhahn [11], who view imitation as the process of construct-
ing mappings between states, actions, and goals of different agents (see also the
abstraction model of Kuniyoshi at al. [8]). Unlike their model, we assume that
state-space mappings are given, the mentor’s actions are not directly observ-
able, the goals of the mentor and learner may differ, and that environments are
stochastic. Furthermore, we do not require that the learner explicitly duplicate
the behavior of the mentor. Our model is also related to behavioral cloning, but
again we do not share the goal of behavioral cloning which aims to reproduce
an observed behavior by inducing an objective function from observed behavior
[12]. As in [5], our model incorporates an independent learning and optimization
component that differs from “following” and “demonstration” models often used
in robotics [7,13], though the repair strategies we invoke do bear some relation
to “following” models.

2 Imitation with Homogeneous Actions

In this section we summarize the implicit imitation model developed in [3]. Fur-
ther details and motivation can be found in this paper. In implicit imitation [3],
we assume two agents, a mentor m and an observer o, acting in a fixed envi-
ronment.1 We assume the observer (or learner) is learning to control a Markov
decision process (MDP) with states S, actions Ao and reward function Ro. We
use Pro(t|s, a) to denote the probability of transition from state s to t when ac-
tion a is taken. The mentor too is controlling an MDP with the same underlying
state space (we use Am, Rm and Prm to denote this MDP).

1 The extension to multiple mentors with varying expertise is straightforward [3].
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We make two assumptions: the mentor implements a deterministic stationary
policy πm, which induces a Markov chain Prm(t|s) = Prm(t|s, πm(s)) over S;2

and for each action πm(s) taken by the mentor, there exists an action a ∈ Ao

such that the distributions Pro(·|s, a) and Prm(·|s) are the same. This latter
assumption is the homogeneous action assumption and implies that the learner
can duplicate the mentor’s policy. We do not assume that the learner knows a
priori the identity of the mentor’s action πm(s) (for any given state s), nor that
the learner wants to duplicate this policy (the agents may have different reward
functions). Since the learner can observe the mentor’s transitions (though not
its actions directly), it can form estimates of the mentor’s Markov chain, along
with estimates of its own MDP (transition probabilities and reward function).

We define the augmented Bellman equation as follows:

V (s) = Ro(s) + γ max

{

max
a∈Ao

{
∑

t∈S

Pro(t|s, a)V (t)

}

,
∑

t∈S

Prm(t|s)V (t)

}

. (1)

This is the usual Bellman equation with an extra term added, namely, the sec-
ond summation, denoting the expected value of duplicating the mentor’s action
πm(s). Since this (unknown) action is identical to one of the observer’s actions,
the term is redundant and the augmented value equation is valid. Furthermore,
under certain (standard) assumptions, we can show that the estimates of the
model quantities will converge to their true values; and an implicit imitation
learner acting in accordance with these value estimates will converge optimally
under standard RL assumptions.3 More interesting is the fact that by acting in
accordance with value estimates produced by augmented Bellman backups, an
observer generally converges much more quickly than a learner not using the
guidance of a mentor. As demonstrated in [3], implicit imitators typically accu-
mulate reward at a higher rate earlier than standard (model-based) RL-agents,
even when the mentor’s reward function is not identical to the observer’s.

At states the mentor visits infrequently (because they are rarely traversed
by its optimal policy), the learner’s estimates of the mentor’s Markov chain
may be poor compared to the learner’s own estimated action models. In such
cases, we would like to suppress the mentor’s influence. We do this by using
model confidence in augmented backups. For the mentor’s Markov chain and the
observer’s action transitions, we assume a Dirichlet prior over the parameters
of each of these multinomial distributions. From sample counts of mentor and
observer transitions, the learner updates these distributions. Using a technique
inspired by Kaelbling’s [15] interval estimation method, we use the variance in
our estimated Dirichlet distributions for the model parameters to construct crude
lower bounds on both the augmented value function incorporating the mentor
model and an unaugmented value function based strictly on the observer’s own
experience. If the lower bound on the augmented value function is less than

2 Generalization to stochastic policies can easily be handled.
3 We assume a model-based RL algorithm (e.g., prioritized sweeping [14] and an ex-

ploration model which is influenced by state values (e.g. ε greedy).



114 B. Price and C. Boutilier

Table 1. Augmented Backup

FUNCTION augmentedBackup(V +,Pro,σ
2
o,Prm,σ2

m,s)
a∗ = argmaxa∈Ao

∑
t∈S Pr(s, a, t)V +(t)

Vo(s) = Ro(s) + γ
∑

t∈S Pr(s, a∗, t)V (t); Vm(s) = Ro(s) + γ
∑

t∈S Prm(s, t)V (t)

σo(s) = γ2 ∑
t∈S σ(s, a∗, t)V +(t)2; σm(s) = γ2 ∑

t∈S σm(s, t)V +(t)2

V −
o (s) = Vo(s) − σo(s); V −

m (s) = Vm(s) − σm(s)

IF Vo > Vm THEN V +(s) = Vo(s)
ELSE V +(s) = Vm(s)
RETURN V +(s)

the lower bound on the unaugmented value function, then either the augmented
value is in fact lower, or it is highly variable. Using lower bounds ensures that
uncertainty about an action model makes it look worse. In either circumstance,
suppression of the mentor’s influence is appropriate and we use an unaugmented
Bellman backup.

In the algorithm shown in Table 1, the inputs are the observer’s augmented
value function V +, its action model and variance PRo, σ2

o , the action model and
variance for mentor observations Prm, σ2

m and the current state s. The output
is a new augmented value for state s. The program variable Vo(s) represents
the best value the observer can obtain in state s using its own experience-based
action models and Vm(s) represents the value the agent could obtain if it em-
ployed the same action as the mentor. The term σ2

o(s) represents a conservative
overestimate of the variance in the estimate of the value of state s, V (s), due
to the local model uncertainty in the observer’s own action models and σ2

m(s)
represents a similar uncertainty in the estimate derived from the mentor action
model. The uncertainty is used to construct loose lower bounds on the value es-
timates denoted V −

o and V −
m . These bounds are crude but sufficient to suppress

mentor influence at appropriate states.

3 Imitation with Heterogeneous Actions

When the homogeneity assumption is violated, the implicit imitation framework
described above can cause the learner to perform very poorly. In particular, if the
learner is unable to make the same state transition (with the same probability)
as the mentor at a state s, it may drastically overestimate the value of s.4 The
inflated value estimate may cause the learner to return repeatedly to this (poten-
tially undesirable) state with a potentially drastic impact on convergence time
4 Augmented backups cannot cause underestimation of the value function.
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(see Section 4). Implicit imitation has no mechanism to remove the unwanted
influence of the mentor’s model (confidence estimates play no role here). What is
needed is the ability to identify when the key assumption justifying augmented
backups—that the observer can duplicate every mentor action—is violated.

In such heterogeneous settings, this issue can be resolved by the use of an
explicit action feasibility test: before an augmented backup is performed at s, the
observer tests whether the mentor’s action am “differs” from each of its actions at
s, given its current estimated models. If so, the augmented backup is suppressed
and a standard Bellman backup is used to update the value function. By default,
mentor actions are assumed to be feasible for the observer; however, once the
observer is reasonably confident that am is infeasible at state s, augmented
backups are suppressed at s.

Recall that action models are estimated from data with the learner’s uncer-
tainty about the true transition probabilities reflected in a Dirichlet distribution.
Comparing am with ao is effected by a difference of means test w.r.t. the cor-
responding Dirichlets. This is complicated by the fact that Dirichlets are highly
non-normal for small sample counts. We deal with the non-normality by requir-
ing a minimum number of samples and using robust Chebyshev bounds on the
pooled variance of the distributions to be compared. When we have few sam-
ples, we persist with augmented backups (embodying our default assumption of
homogeneity). If the value estimate is inflated by these backups, the agent will
be biased to obtain additional samples which will then allow the agent to per-
form the required feasibility test. We deal with the multivariate complications by
performing the Bonferroni test [16] which has been shown to give good results
in practice [17], is efficient to compute, and is known to be robust to depen-
dence between variables. A Bonferroni hypothesis test is obtained by conjoining
several single variable tests. Suppose the actions ao and am result in r possible
outcomes, s1, · · · , sr, at s (i.e., r transition probabilities to compare). For each
si, hypothesis Ei denotes that ao and am have the same transition probabil-
ity Pr(si|s), and Ēi the complementary hypothesis. The Bonferroni inequality
states:

Pr

[
r⋂

i=1

Ei

]

≥ 1 −
r∑

i=1

Pr
[
Ēi

]
.

Thus we can test the joint hypothesis
⋂r

i=1 Ei—the two action models are the
same—by testing each of the r complementary hypotheses Ēi—transition prob-
ability for outcome i is the same— at confidence level α/r. If we reject any of
the complementary hypotheses we reject the notion that the two actions are
equal with confidence α. The mentor action am is deemed infeasible if for every
observer action ao, the multivariate Bonferroni test, just described, rejects the
hypothesis that the action is the same as the mentor’s.

The feasibility test is summarized in Table 2. The feasibility test tests whether
the action demonstrated by mentor m in state s, is likely to be feasible for the
observing agent in state s. The parameters of the observer’s own Dirichlet distri-
butions are denoted no(s, a, t) which denotes the number of times the observer
observes itself making the transition from state s to state t when it executes
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action a in state s. The parameters for the mentor action model are denoted
nm(s, t) which gives the number of times the observer observes the mentor mak-
ing the transition from state s to state t. The difference of means is denoted µ∆

and the test statistic z∆.

Table 2. Action Feasibility Testing

FUNCTION feasible(m,s) : Boolean
FOR each ai in Ao DO

allSuccessorProbsSimilar = true
FOR each t in successors(s) DO

µ∆ = Pro(s, a, t) − Prm(s, t)

z∆ = µ∆

√
no(s,a,t)∗varo(s,a,t)+nm(s,t)varm(s,t)

no(s,a,t)+nm(s,t)

IF z∆ > zα/r

allSuccessorProbsSimilar = false
END FOR
IF allSuccessorProbsSimilar THEN return true

END FOR
RETURN false

Action feasibility testing has some unintended effects. Suppose an observer
has previously constructed an estimated value function using augmented back-
ups. Subsequently, the mentor’s action am is judged to be infeasible at s. If the
augmented backup is suppressed, the value of V (s) and all of its preceding states
will drop as value backups propagate the change through the state space. As a
result, the bias of the observer toward s will be eliminated. However, imitation is
motivated by the fact that the observer and mentor are similar is some respects.
We might hope, therefore, that there exists a short path or a repair around the
infeasible transition. The observer’s ability to “duplicate” am might take the
form of local policy rather than a single action.

To encourage the learner to explore the vicinity of an infeasible action, we will
sometimes consider retaining the mentor’s influence through augmented backups
and then use the notion of k-step repair to search for a local policy. Specifically,
when am is discovered to be infeasible at state s, the learner undertakes a k-
step reachability analysis (w.r.t. its current model Pro) to determine if it can
“workaround” the infeasible action (i.e., find a k-step path from s to a point on
the mentor’s nominal trajectory). If so, the learner knows that value will “flow”
around the infeasible transition and thereby maintain the existing exploration
bias. In this case, the learner concludes that the state is already “repaired” and
augmented backups are suppressed. Otherwise, a random walk with expected
radius of k-steps is undertaken to explore the area. This allows the learner to
improve its model and discover potential repair paths. This walk is repeated at
the next n visits of s or until a repair path is found. If no repair is found after
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n attempts, the agent concludes that the infeasible transition is irreparable and
augmented backups are suppressed permanently. Thus the mentor’s influence
persists in guiding the learner toward s until it is deemed to be unnecessary
or misleading. The parameters k, and n must be tuned empirically, but can be
estimated given knowledge of the connectivity of the domain and prior beliefs
about how similar (in terms of length of average repair) the trajectories of the
mentor and observer will be.

4 Empirical Demonstrations

Experimental evaluation of the original implicit imitation mechanism can be
found in [3]. Our first experiment in this paper illustrates the necessity of feasi-
bility testing. Agents must navigate an obstacle-free, 10-by-10 grid-world from
upper-left corner to lower-right. We give a mentor with the “NEWS” action set
(North, South, East and West movement actions) an optimal stationary policy.
We study three learners, with the “Skew” action set (N, S, NE, SW) which are
unable to duplicate the mentor exactly. The first learner imitates with feasibility
testing, the second without feasibility testing, and the third control agent uses no
imitation (i.e., is a standard RL-agent). Actions are perturbed 5% of the time.
As in [3] the agents use model-based reinforcement learning with prioritized
sweeping [14]. We used k = 3 and n = 20.

In Figure 1 the horizontal axis represents time and the vertical axis represents
the average reward per 1000 time steps (averaged over 10 runs). The imitation
agent with feasibility testing converges quickly to the optimal rate. The agent
without feasibility testing achieves sporadic success early on, but due to frequent
attempts to duplicate infeasible actions it never converges to the optimal rate
(stochastic actions permit it to achieve goals eventually). The control agent
without guidance due to imitation demonstrates a delay in convergence relative
to the imitation agents, but converges to optimal rate in the long run. The
gradual slope of the control agent is due to the higher variance in the control
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Fig. 1. Utility of Feasibility Testing
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agent’s discovery time for the optimal path. Thus, we see that imitation improves
convergence, but feasibility testing is necessary when heterogeneous actions are
present.

We developed feasibility testing and k-step repair to deal with heterogeneous
actions, but the same techniques can be applied to agents operating in state
space with different connectivity (these are equivalent notions ultimately). We
constructed a domain where all agents have the same NEWS action set; but
we introduce obstacles as shown in Figure 2, into the environment of the learn-
ers. The obstacles cause the imitator’s actions to have different effects than the
mentor’s.
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Fig. 2. Obstacle Map, Mentor’s Path and Experiment Results

In Figure 2 we see that the imitator with feasibility testing performs best,
the control agent converges eventually, and the agent without feasibility testing
stalls. The optimal goal rate is higher in this scenario because the agents use the
same “efficient” NEWS actions. We see local differences in connectivity are well
handled by feasibility testing.
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In simple problems it is likely that a learner’s exploration may form possible
repair paths before feasibility testing cuts off the guidance obtained from mentor
observations. In more difficult problems (e.g., where the learner spends a lot of
time exploring), it may conclude that a mentor’s action is infeasible long before
it has constructed its own repair path. The imitator’s performance would then
drop down to that of an unaugmented reinforcement learner.

To illustrate the effectiveness of k-step repair, we devised a domain where
agents must cross a three-step wide “river” which runs vertically and exacts a
penalty of -0.2 per step (see Figure 3). The goal state is worth +1.0. Without
a long exploration phase, agents generally discover the negative states of the
river and curtail exploration in this direction before actually making it across.
If we examine the value function estimate (after 1000 steps) of an imitator with
feasibility testing but no repair capabilities, we see that, due to suppression
by feasibility testing, the high-value states (represented by large dark circles in
Figure 3), backed up from the goal terminate abruptly at an infeasible transition
before making it across the river. In fact, they are dominated by the lighter grey
circles showing negative values. Once this barrier forms, only an agent with
a very optimistic exploration policy will get to the goal, and then only after
considerable exploration. In this experiment, we apply a k-step repair agent to
the problem with k = 3.

Examining the graph in Figure 3, we see that both imitation agents experi-
ence an early negative dip as they are guided deep into the river by the mentor’s
influence. The agent without repair eventually decides the mentor’s action is in-
feasible, and thereafter avoids the river (and the possibility of finding the goal).
The imitator with repair also discovers the mentor’s action to be infeasible, but
does not immediately dispense with the mentor’s guidance. It keeps exploring in
the area of the mentor’s trajectory using random walk, all the while accumulat-
ing a negative reward until it suddenly finds a repair path and rapidly converges
on the optimal solution.5 The control agent discovers the goal only once in the
ten runs.

5 Conclusion

Implicit imitation makes use of the observer’s own reward function and a model
augmented by observations of a mentor to compute the actions an imitator
should take without requiring that the observer duplicate the mentor’s actions
exactly. We have seen that feasibility testing extends implicit imitation in a
principled manner to deal with the situations where the homogeneous actions
assumption is invalid. Adding k-step repair preserves and extends the mentor’s
guidance in the presence of infeasible actions, whether due to differences in action
capabilities or local differences in state spaces. Our approach also relates to the
idea of “following” in the sense that the imitator uses local search in its model to
repair discontinuities in its augmented value function before acting in the world.
5 While repair steps take place in an area of negative reward in this scenario, this need

not be the case. Repair doesn’t imply short-term negative return.
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We are currently extending our model to deal with partially-observable environ-
ments and to make explicit use of abstraction and generalization techniques in
order to tackle a wider range of problems.
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Abstract. The situation calculus is a logical formalism that has been
extensively developed for planning. We apply the formalism in a com-
plex multi-agent domain, modelled on the game of Clue. We find that
the situation calculus, with suitable extensions, supplies a unified repre-
sentation of (1) the interaction protocol, or structure of the game, (2)
the dynamics of the knowledge and common knowledge of the agents,
and (3) principles of strategic planning.

1 Introduction

The situation calculus is a logical formalism originally developed for planning
by a single agent but more recently extended to deal with multiple agents and
knowledge. In this paper we use a variant of the game of Clue as a testbed for
gauging the power of the situation calculus in an epistemic, multi-agent setting.
This has the potential to contribute to several areas of AI, such as the design of
intelligent agents, game playing, and the formalism of the situation calculus itself.
The situation calculus provides a general language for specifying interactions of
a software agent; it can also be used to represent an agent’s reasoning. Thus the
situation calculus provides an integrated description of the action capabilities of
agents and their reasoning and decision-making mechanisms. Similarly, in game
playing the situation formalism can represent the rules of the game as well as
knowledge about agents’ strategies. Conversely, the connection with games opens
up the possibility of applying efficient algorithms from games research for finding
optimal strategies in multi-agent planning problems.

This paper focuses on issues concerning multi-agent interactions in the situa-
tion calculus. A novel aspect of this work is that we deal with knowledge that is
common to a group of agents. We address these issues in a variant of the game
of Clue, described below. Clue is a game in which the agents—players—have
to discover the state of the world, rather than change it. We use the situation
calculus to represent three aspects of the game:

1. The rules—what players can do when.
2. Information—what the players know at various stages of the game, includ-

ing (objective) knowledge of the domain together with knowledge opf other
agent’s knowledge.
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3. Planning—how they can exploit that knowledge to find strategic plans for
playing the game.

Most of the paper deals with the first two aspects. We found that the situa-
tion calculus is a remarkably natural formalism for describing a game structure.
For representing the knowledge of the players during the game we employ an
epistemic extension of the situation calculus that axiomatizes a knowledge flu-
ent [8]. We require several extensions beyond the single-agent epistemic version
of the situation calculus. First, we need an agent parameter for knowledge, to
distinguish whose knowledge is referred to. Secondly, strategic reasoning involves
an agent’s reasoning about another agent’s knowledge, as well as common knowl-
edge.

We concentrate on a variant of Clue here, called MYST. The next section
introduces Clue and MYST, and the situation calculus. The third section devel-
ops our axiomatisation of the game, while the fourth section addresses reasoning
issues. We conclude with a short discussion. Further details are found in [1].

2 Background

Clue and MYST: We ignore those aspects of Clue that are irrelevant to
the general problems of knowledge representation and planning. The premise
of Clue is that there has been a murder; it is each player’s goal to determine
the murderer, weapon, and location of the murder. Each suspect, and possible
weapon and location, are represented by a card. Initially the cards are divided
into their three sorts (suspect, weapon, location), and from each sort one card
is randomly selected and hidden. These three cards determine the details of the
crime. The remaining cards are dealt to the players. At the outset a player sees
only her own hand, and thus knows what cards she has been dealt, but not what
the other players have received. Each player in turn asks one of the other players
about a suspect, a weapon and a room. If the (queried) player has one of the
queried cards, she shows it to the asker. The asker then knows that the player
has that card; the other players know only that the (showing) player has one
of the three cards. A player may guess the identity of the hidden cards at the
end of their turn and, if correct, they win the game. The three hidden cards
represent the state of the world. The joint knowledge of the players is sufficient
to determine this information. However each player’s goal is to learn the state
of the world before the others do. Thus the game is of the same flavour as the
“muddy children problem” [2], although more subtle and (we feel) interesting.

We reformulate the game of Clue as a simpler game that we call “MYST”
(for “mystery”). In MYST there is a finite set of cards, but without the three
sorts in Clue. There are m cards hidden in a “mystery pile” and n are given
to each of p players. Hence there is a total of k = m + (n × p) cards. On their
turn, a player asks a question about q cards of the form, “Do you have one of
cards: c1, . . . , cq?” This player is called the “poser”. If the next player has one
of these cards, they (privately) show the poser the card and the poser’s turn is
over. If the answer is “no”, then the next player in turn is presented with the
same query. After asking his question, a player may guess the contents of the
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mystery pile. If correct, he wins the game; otherwise, the player is relegated to
answering posed queries only. The game ends if a player determines the contents
of the mystery pile or if all players have been eliminated by unsuccessful guesses.

The Situation Calculus: The intuition behind the situation calculus is that
the world persists in one state until an action is performed that changes it to
a new state. Time is discrete, one action occurs at a time, time durations do
not matter, and actions are irreducible entities. Actions are conceptualised as
objects in the universe of discourse, as are states of the world. Hence, states and
actions are reified. That is, the action of, for example, moving block a from block
b to block c is an object.

The constant s0 refers to the initial state, and do(A, s) is the state result-
ing from doing action A in state s. Thus do(stack(a, b), s0) is the state re-
sulting from a stack action performed on a and b in situation s0. The fact
that, after performing the stack action, “a is on b” could be represented by
on(a, b, do(stack(a, b), s0)). Time-varying predicates, such as on, are referred to
as fluents. Actions have preconditions specifying the conditions under which an
action can be performed, and successor state axioms giving the effects of an
action. The predicate Poss(A, s) is used by convention to “collect” the pre-
conditions for action A in situation s. So for stack we can express that the
preconditions are (1) the hand is holding the block to be stacked and the block
to be stacked onto has a clear top:

Poss(stack(X, Y ), s) ↔ inhand(X, s) ∧ clear(Y, s).

The fluent on(X, Y, s) is true in a state resulting from X being stacked on Y so
long as the stack action was possible:

Poss(stack(X, Y ), s) → on(X, Y, do(stack(X, Y ), s)).

The only other time that an on is true in a non-initial state is when it was true
in the previous state, and was not undone by an action:

Poss(A, s) ∧ A 6= unstack(X, Y ) ∧ on(X, Y, s). → on(X, Y, do(A, s)).

This last axiom is called a frame axiom, and specifies what remains unchanged
during an action.

Hayes and McCarthy [6] originally proposed the situation calculus; we use
the version from [5], making use of the formalisation of knowledge in [8], with
variants that we describe later. A multiple-agent version of the situation calculus
is described in [4]. There, information exchanges are modelled via “send” and
“receive” commands. Here in contrast we axiomatise operations that result in a
change of knowledge for an agent. Thus for example, if an agent shows another
a card, then the second knows the value of the card.

3 Representing MYST in the Situation Calculus

In this section, we formalize the game of MYST by specifying a set of axioms
in the language of the situation calculus. Of particular interest is the knowledge
fluent that describes what players know at various stages of the game.



124 B. Bart, J.P. Delgrande, and O. Schulte

3.1 Situation Calculus Terms Used in the Formalisation of MYST

Constants: We assume enough arithmetic to define a sort natural num with
constants 0, 1, .., n, ... to have their intended denotation. We extend the situation
calculus with two more sorts: the sort player and the sort card. We introduce
the constants described in the following table.

Constant Symbol(s) Sort Meaning
p natural num total number of players
k natural num total number of cards
n natural num number of cards in each player’s hand
m natural num number of cards in mystery pile
q natural num number of cards in a query

p1, .., pp player pi denotes player i.
c1, ..., ck card ci denotes card i

To encode the fact that we deal with a finite set of distinct players and cards,
we adopt a unique names assumption (UNA) and domain closure assumption
(DCA) with respect to these sorts. That is, for the set of players we add axioms

UNAP : (pi 6= pj) for all 1 ≤ i 6= j ≤ p.
DCAP : ∀x. player(x) ≡ (x = p1 ∨ · · · ∨ x = pp).

Analogous axioms (UNAC , DCAC) are adopted for the set of cards. We have
a further constant s0 to denote the initial situation in MYST, which obtains
immediately after the cards have been dealt.

Since the above predicates conceptually define a finite set of players (and
cards), we adopt a set theoretic notation for players (and cards). Adopting a set
notation—which we could embed in first-order logic—will make the axiomatisa-
tion neater and the language more mathematically familiar. Henceforth we will
use the following notation

C := {c1, ..., ck} the set of all cards
P := {1, ..., p} the set of all players (denoted by integers).

Variables: We introduce variables ranging over components of MYST. We need
two more sorts: set cards for a set of cards, and set players for a set of players.
We will use variables as follows.

Symbol Meaning
i, j players (i, j ∈ P );

typically i is the poser and j the responder
cx single card (cx ∈ C)
G subset of players (G ⊆ P )
Q set of cards in a question (Q ⊆ C)
M set of cards in a guess about the mystery pile (M ⊆ C)
Cj set of cards held by player j (Cj ⊆ C)
C0 set of cards in mystery pile (C0 ⊆ C)
Σ generic set of cards (Σ ⊆ C)
a an action
s a situation



Knowledge and Planning in an Action-Based Multi-agent Framework 125

We will not explicitly list “type-checking” predicates to ensure that cx is a card
(for instance).

Actions: The following is the list of action functions and their informal de-
scriptions. The sequence in which actions may occur is defined by the predicate
Poss(a, s) below. Note that the first argument always represents the player per-
forming the action.

Action function symbol Meaning
asks(i, Q) Player i asks question Q

no(j) Player j says no to question Q
yes(j) Player j says yes to question Q

shows(j, i, cx) Player j shows card cx ∈ Q ∩ Cj to player i
guess(i, M) Player i guesses that C0 = M
noguess(i) Player i makes no guess
endturn(i) Player i ends his turn

Fluents: The following is a list of fluents and their informal descriptions. The
evaluation of the fluents will depend on the situation s. Their truth values may
change, according to successor state axioms.
Fluents Describing the Location of Cards:

H(i, cx, s) : Player i holds card cx.
H(0, cx, s) : The mystery pile holds card cx.

Fluents Describing Knowledge:
Know(i, φ, s) : Player i knows φ.
C(G, φ, s) : φ is common knowledge for all players in G ⊆ P .

C(G, φ, s) has the interpretation that, not only do all the players in G know that
φ, but every player in G knows that the others know this, that they know that
each knows this, and so on. There are well-known difficulties with axiomatizing a
common knowledge operator, and well-known solutions as well (cf.[2] ). We don’t
address these issues, but simply assume a language with a common knowledge
modal operator.
Fluents Describing the State of the Game:
In(i, s) : Player i has not yet been defeated due to a wrong guess.
Question(Q, s) : Question Q was the most recently asked question.
Gameover(s) : The game is over.

Without going into the details, we may assume the presence of axioms that
ensure that at most one query is asked per situation, that is, that Question(Q, s)
holds for at most one query Q.
Fluents Describing the Turn Order and Phases:

Turn(i, s) : It is player i’s turn.
AnsTurn(j, s) : It is player j’s turn to answer the question.
As with queries, we assume the presence of axioms that ensure that it is

exactly one player’s turn and exactly one player’s “answer turn”.
Fluents Describing the Phases:

AskPhase(s) : It is the ask phase.
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Similarly we have fluents for the answer phase (AnsPhase(s)), show phase
(ShowPhase(s)), guess phase (GuessPhase(s)), and end phase (EndPhase(s)).
Any situation s is in exactly one of these phases; we assume axioms that enforce
this specification.

3.2 Axioms

The Initial Situation s0: Different initial situations are possible depending on
the initial random distribution of the cards. [8,5] modify the situation calculus
to allow different initial situations by defining a predicate K0(s) that applies to
situations that might be initial ones for all the agent knows. Our approach is
different but equivalent: We use the single constant s0 to refer to whatever initial
situation results from dealing the cards, and represent the players’ uncertainty by
describing what fluents they do and do not know to hold in the initial situation.
The following table of initialization axioms describes those fluent values common
at s0 in all games.

Initialization Axiom Meaning
∀i.In(i, s0) No player has been eliminated

∀Q.¬Question(Q, s0) No one has asked a question
AskPhase(s0), Turn(1, s0) Player 1 is in the AskPhase of her turn

¬Gameover(s0) The game is not over

The cards C are partitioned among the players and the mystery pile. The fol-
lowing axioms are the partition axioms for C. Here and elsewhere, free variables
are understood to be universally quantified.

Exclusiveness H(i, cx, s0) → ∀j 6= i.¬H(j, cx, s0).
If player i holds card cx, then no other player j (or the mystery pile) holds
cx. If the mystery pile holds card cx, then cx is not held by any player.

Exhaustiveness
∨p

i=0 H(i, cx, s0).
Every card is held by at least one player (or the mystery pile).

Set Size for Players(SSA)
∀i ∈ {1..p}.∃Σ.|Σ| = n ∧ (∀x.H(i, cx, s0) ⇔ cx ∈ Σ).
For player i, there is a set of n cards containing just the cards held by i.

Set Size for the Mystery Pile
∃Σ.|Σ| = m ∧ (∀cx.H(0, cx, s0) ⇐⇒ cx ∈ Σ).
There is a set of m cards containing just the cards in the mystery pile.

Preconditions: It is straightforward to define the preconditions of actions in
terms of the fluents. We do not have space to give all the definitions in detail;
instead, we specify the preconditions for the asks action as an example—the
other preconditions are analogous. Player i can ask a question iff

1. it is her turn and
2. the game is in the AskPhase.

Thus we have

Poss(asks(i, Q), s) ≡ Turn(i, s) ∧ AskPhase(s).
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Successor State Axioms: We next describe the successor state axioms for the
fluents. We begin with the card holding fluent.

The cards held by the players do not change over the course of the game.

H(i, cx, do(a, s)) ≡ H(i, cx, s) for i ∈ {0..p}.

The fluent H is independent of the situation argument, and so we abbreviate
H(i, cx, s) by H(i, cx). The fact that the card holdings are the same from situ-
ation to situation formally captures the fact that the world remains “static” as
the game continues, so that players are not reasoning about changes in the world,
but only about increasing information about a fixed but unknown constellation.

Next, we represent turn taking. Let before(i) = i−1 if i > 1, and before(1) =
p. Then we have the following axiom. A player’s turn does not change until the
previous player has taken the endturn action; the previous player is given by
the before function.

Turn(i, do(a, s)) ≡ Turn(before(i), s) ∧ a = endturn((before(i)) ∨
Turn(i, s) ∧ ¬(a = endturn(i))

Other axioms describe the other fluents; we omit the details.

Axioms for Knowledge in MYST: We conceive of the players as perfect rea-
soners. Every player knows all tautologies and is able to derive all consequences
of a set of formulas. As well, every player knows all the rules and axioms; see
[2] for a full characterization. Although these assumptions do not do justice to
the limitations of human and computational players, it makes the analysis of
strategies mathematically easier.

Game theorists distinguish broad classes of games according to their epis-
temic structure. We locate our discussion of knowledge in MYST in these gen-
eral game-theoretic terms; this will give an indication of the size of the class of
multi-agent interactions that falls within our analysis. We shall give informal
descriptions of the game-theoretic concepts, with a fairly precise rendering of
the concept in terms of knowledge fluents for MYST. Game theory texts give
precise definitions in game-theoretic terms; see for example [7].

A game has complete information if the rules of the game are common knowl-
edge among the players. This is indeed the case for MYST; in the situation
calculus, we can capture the complete information by stipulating that all the
axioms describing the game structure is common knowledge in every situation.
To illustrate, we have that C(P, In(i, s0), s0) holds for p ∈ {1..p} —it is common
knowledge that at the beginning every player is in the game. A game has perfect
information just in case every player knows the entire history of the game when
it is his turn to move. Chess is a game of perfect information; MYST is not.
For example, players don’t know the entire initial distribution of cards, which
is part of the history of the game. A game features perfect recall if no player
forgets what she once knew or did. We express perfect recall by stipulating that
once a player knows a fact in a situation, she continues to know it. Thus the
general class of games for which something like our axiomatization should be
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adequate includes the class of games of complete, imperfect information with
perfect recall.

The fluent Know(i, φ, s) expresses that player i knows that φ in situation s.1
First, the players know which cards they hold in the initial situation s0.

Axiom 1 (Knowledge Initialization) Know(i, H(i, cx, s0), s0).

Now for the knowledge successor state axioms. Since we assume that the
players have perfect recall, we stipulate that knowledge once gained is not lost.
Formally, let φ be a nonepistemic fluent that does not contain a Know fluent.
The case of special interest to the players is the fluent H(i, cx) (player i holds
card x). The next axiom says that knowledge about φ is permanent in the sense
that once gained, it is never lost later.

∀i, s, s′.(s′ v s ∧ Know(i, φ, s′)) → Know(i, φ, s)

∀i, s, s′.(s′ v s ∧ Know(i,¬φ, s′)) → Know(i,¬φ, s)
(1)

Inductively, it can be seen that knowing any of the knowledge of the form
(1) is also permanent, and so on. Therefore Axiom (1) holds for the common
knowledge fluent C as well as Know. Most of the reasoning about strategy rests
on common knowledge between agents, that is, on the C fluent, rather than the
separate knowledge of the agents expressed by the Know fluent.

Players obtain new knowledge only when one player shows a card to another.

Axiom 2 do(shows(j, i, cx), s) → C({i, j}, do(shows(j, i, cx), s), s).

Thus when player j shows a card to player i, it is common knowledge be-
tween them that this action took place. Note that it is then also common
knowledge between i and j that player j holds card cx. For one of the pre-
conditions of shows(j, i, cx) is that j holds card cx, and since the precondi-
tions are common knowledge between the players, it is common knowledge that
(do(shows(j, i, cx), s) → holds(j, cx, s).

When player j shows player i a card, it becomes common knowledge among
the other players that j has at least one of the cards mentioned in i’s query,
although the other players won’t necessarily know which card. Our axiomatiza-
tion is powerful enough to represent the differential effect of showing cards on
the various players, but for lack of space we do not go into the details here.

4 Deriving Knowledge in MYST

We state a result that follows from the definition of Clue within the axiomatized
framework. This result describes what a player must know to prove the existence
of a card in the mystery pile, and thus guides the derivation of winning strategies.
1 See [8,5] for details. Suffice it to note that Know is defined in first-order logic by

explicitly axiomatising an (equivalent of an) accessibility relation [3].



Knowledge and Planning in an Action-Based Multi-agent Framework 129

Theorem 3. Player i knows that a card cx is in the mystery pile just in case i
knows that none of the other players hold cx. In symbols,

Know(i, H(0, cx), s) ≡ ∀j.Know(i,¬H(j, cx), s).

Furthermore, player i knows which cards are in the mystery pile just in case he
knows which cards are not in the mystery pile. In symbols,

∀cx ∈ C0.Know(i, H(0, cx), s) ≡ ∀cy /∈ C0.Know(i,¬H(0, cy), s).

The result follows more or less immediately from the partition axioms. The
result establishes two subgoals for the main goal of determining that a card cx

is in the mystery pile: The first, sanctioned by the first part of the theorem,
is to determine portions of the pile directly from “no” responses. The second,
following the second part of the theorem, is to determine the locations of the
k − m cards outside the mystery pile from “yes” responses and then, by the set
size axiom (SSA), deduce the m cards in the mystery pile. In either case, the set
size axiom is crucial for drawing conclusions about the location of cards.

These observations are fairly obvious to a human analyzing the game. The
point is that through our formalization of the game structure, a computational
agent with theorem-proving capabilities can recognize these points and make use
of them in planning queries.

In a multi-agent setting, optimal plans have an interactive and recursive
structure, because an optimal plan for agent i must typically assume that agent
j is following an optimal plan, which assumes that agent i is following an optimal
plan ... Game-theoretic concepts that incorporate this recursive structure are the
notion of Nash equilibrium and backward induction analysis (alpha-beta prun-
ing) [7]. For restricted versions of MYST (for example, with two players only),
we have determined the optimal backward induction strategies. Determining the
Nash equilibria of MYST is an open question for future research.

We have also analysed aspects of the complexity of reasoning in MYST. Our
analysis so far indicates that the computational complexity of this reasoning
becomes intractable as the size of the game increases, but is quite manageable
in relatively small spaces such as that of the original Clue game.

5 Conclusion

Clue and its variant MYST offer a number of challenges to a planning formalism
for multi-agent interactions. We must represent the rules governing the interac-
tion, uncertainty about the initial distribution of cards, the effects on knowledge
and common knowledge of show actions, and assumptions about the reasoning
of the agents, such as perfect recall. We showed that the epistemic version of the
situation calculus, extended with a common knowledge operator, can represent
all these aspects of the agents’ interaction in a unified, natural and perspicuous
manner. The formal representation permits agents to reason about each other’s
knowledge and their own, and to derive strategies for increasing their knowledge
to win the game. Our results confirm the expectation that the situation calcu-
lus will be as useful for planning in multi-agent interactions in a game-theoretic
setting as it has been for single-agent planning.
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Abstract. A system’s constraints characterizes what that system can
do. However, a dynamic environment may require that a system alter
its constraints. If feedback about a specific situation is available, a sys-
tem may be able to adapt by reflecting on its own reasoning processes.
Such reflection may be guided not only by explicit representation of the
system’s constraints but also by explicit representation of the functional
role that those constraints play in the reasoning process. We present an
operational computer program, Sirrine2 which uses functional models
of a system to reason about traits such as system constraints. We fur-
ther describe an experiment with Sirrine2 in the domain of meeting
scheduling.

1 Introduction

All systems have constraints: restrictions on what things that system does. How-
ever, a dynamic environment may place demands on a system for which its
constraints are not adequate. One potential use of machine learning is the modi-
fication of the constraints of a computer-based system to meet new requirements.
It is often necessary (or at least useful) for a machine learning system to possess
explicit representations of the concepts which it is learning about. Thus the goal
of learning new constraints raises the question: how can a system represent and
reason about its own constraints?

Consider, for example, the task of scheduling a weekly meeting among a group
of users with fixed schedules. A system which performs this task is likely to have
a wide variety of constraints, e.g., the set of times during which a meeting might
be scheduled. If, however, a meeting scheduler has restrictions on the times that
it can schedule meetings and those restrictions turn out to be invalid, it will have
to modify those constraints.

One way that a system can determine that its constraints are inadequate is
through feedback which is specific to a particular situation. A human user might
not want to abstractly specify general constraints for all situations. Indeed such a
user might not be able to completely define the constraints for a complex system.
However, if a user can provide acceptable results for specific problems in which
the meeting scheduler fails, it should be possible for that meeting scheduler to
apply machine learning techniques to adapt to the desired functionality.

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 131–140, 2001.
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If an agent has a model of its own reasoning process, it may be possible to
include constraints within that model, and thus represent not only what the con-
straint values are but also what functional role they play in the agent’s reasoning.
Under these circumstances, model-based diagnosis may be used to identify which
constraints are having what effect on a specific output; the combination of this
information with situation-specific feedback can thus enable adjustment of the
constraints.

The Sirrine2 system is an agent architecture for implementing agents with
self-knowledge. The language for specifying agents in Sirrine2 is the Task-
Method-Knowledge (TMK) language which provides functional descriptions of
reasoning processes. One aspect of these descriptions can be the explicit repre-
sentation of agent’s constraints and the functional role they play in the agent’s
behavior.

2 TMK Models

Agents in Sirrine2 are modeled using the Task-Method-Knowledge (TMK) lan-
guage. Variants and predecessors of this language have been used in a number of
existing research projects such as Autognostic [5], ToRQUE [3], etc. A TMK
model in Sirrine2 is directly accessible to the evolutionary reasoning mecha-
nism as declarative knowledge about the agent’s processing. The work presented
here extends the range of applications of TMK by focusing on its usefulness for
the addition of new capabilities, rather than, for example, correcting failures in
the original design, as is done in Autognostic.

In order to use a TMK model, the user also provides an initial knowledge
state which the agent is to operate under (for example, a meeting scheduler
might be provided with a list of schedules for the people in the meeting). During
the execution of an agent, a trace of that execution is recorded. The trace and the
model are both used by the portions of Sirrine2 which perform evolution. These
evolutionary reasoning mechanisms generate additional, intermediate knowledge.
A particularly significant variety of intermediate knowledge is a localization, i.e.,
an identification of a potential candidate for modification by the system.

Processes in TMK are divided into tasks and methods. A task is a unit of
computation which produces a specified result. A description of a task answers
the question: what does this piece of computation do? A method is a unit of
computation which produces a result in a specified manner. A description of a
method answers the question: how does this piece of computation work? Task
descriptions encode functional knowledge; the production of the specified result
is the function of a computation. The representation of tasks in TMK includes
all of the following information: :input and :output slots, which are lists of con-
cepts which go in and out of the task; :given and :makes slots, which are logical
expressions which must be true before and after the task executes; and some
additional slots which refer to how that task is accomplished. The reference to
how the task is accomplished may involve a simple table or piece of executable
source code (in which case the task is said to be a primitive task) or it may
involve a list of methods which accomplish the task.
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Method descriptions encode the mechanism whereby a result is obtained.
This mechanism is encoded as a collection of states and transitions, and the
states refer to lower-level tasks which contribute to the effect of the method.
Each non-primitive task is associated with a set of methods, any of which can
potentially accomplish it under certain circumstances. Each method has a set
of subtasks which combine to form the operation of the method as a whole.
These subtasks, in turn, may have methods which accomplish them, and those
methods may have further subtasks, etc. At the bottom level are the primitive
tasks, which are not decomposed any further.

Descriptions of knowledge in TMK is done through the specification of do-
main concepts, i.e., kinds of knowledge and task concepts, i.e., elements of knowl-
edge. For example, a domain concept in the domain of meeting schedulers would
be a time slot. Two task concepts for this domain concept might be the time
slot being considered for a meeting and a time slot in which some person is busy.
TMK represents abstract knowledge about the kinds of constraints that exist in
a domain as domain concepts. The connection of a particular set of constraints
to a particular agent is then represented by a task concept.

In addition to the task concepts and domain concepts, modeling of knowledge
in TMK includes information about relationships between knowledge elements.
Domain relations are defined over domain concepts and abstractly describe the
kinds of relationships that may exist over concepts in the domain. An example of
a domain relation would be one that indicates that two time slots overlap. Task
relations are defined over tasks concepts and involve a specific instantiation of a
domain relation over some specific task concepts.

3 Evolution Algorithm

Below is a high-level overview of the algorithm which Sirrine2 uses in the
execution of an evolving agent.

function execute-agent(TMK-Model start-tmk, Knowledge-State start-ks)
Trace tr
Knowledge-State end-ks
Knowledge-State desired-ks
List of Localizations list-loc
TMK-Model new-tmk
(end-ks, tr) = execute-task(start-tmk, start-ks)
If trace-outcome(tr) == success

Return (end-ks, tr)
desired-ks = acquire-feedback()
list-loc = assign-credit(tr, start-tmk, end-ks, desired-ks)
While list-loc != ()

new-tmk = modify(start-tmk, first(list-loc))
If new-tmk != start-tmk

(end-ks, tr) = execute-agent(new-tmk, start-ks)
Return (end-ks, tr)

Else
list-loc = rest(list-loc)

Return (failure, tr)
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The process begins with an initial TMK model and a starting knowledge
state. For example, the execution of a meeting scheduling agent might begin
with a description of that agent and a knowledge state which indicates a list
of schedules to be considered. The primary task of the TMK model is then
executed (this involves recursively selecting and invoking a method for that task,
decomposing that method into subtasks, and then executing those subtasks). The
task execution process returns both a trace and a resulting knowledge state (for
example, a successful execution of a meeting scheduling agent might result in
knowledge of a time slot for a meeting to be held). If the resulting trace indicates
that the task has been successfully completed, the agent execution is successful.
However, if the task was unsuccessful, some evolution of the agent is needed. At
this point, the credit assignment process is used to identify possible causes for
the agent’s failure. The system then steps through the identified localizations one
at a time until one of them allows the modification process to make a change to
the TMK model. The modified TMK model thus describes a new, evolved agent.
The original problem is then attempted again using this modified agent.

4 The Meeting Scheduler

One of the agents which have been modeled in Sirrine2 is a relatively simple
meeting scheduling system. The problem addressed by this meeting scheduler is
finding a time slot for a weekly meeting of a given length for a group of people
each with a given weekly schedule. For example, if three people want to meet,
and one of them is always busy in the morning, and one is busy all day on
Mondays, Wednesdays, and Fridays, and another is busy all day on Tuesday,
the meeting scheduling agent will decide that the meetings should be held on
Thursday afternoons.

Figure 1 presents the tasks and methods for the model of the meeting schedul-
ing agent. The top level task of the agent is the task of scheduling a meeting.
It has one method which it uses, that of enumerating a set of slots and check-
ing those slots against the schedules. The slot-enumeration method sets up three
subtasks: finding a first slot to try, checking that slot against the list of sched-
ules, and finding a next slot to try. It also defines a set of transitions which
order these subtasks; in particular, it starts with the find-first-slot subtask and
then loops between the check-slot-schedules and find-next-slot until either the the
check-slot-schedules task succeeds, (i.e., a slot has been found which satisfies all
of the schedules) and thus the method has been successful or the find-next-slot
task fails (i.e., there are no more slots to consider) and thus the method has
been unsuccessful. Both the find-first-slot and find-next-slot tasks are primitive,
i.e., they are directly implemented by simple procedures. The check-slot-schedules
task, however, is implemented by the schedule-enumeration method. This method
steps through each individual schedule in the list of schedules and checks the
proposed slot against each of them until a conflict is determined or all of the
schedules have been checked.

In addition to the tasks and methods illustrated in Figure 1, the TMK model
of the meeting scheduler also contains explicit representations of the knowledge
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Fig. 1. The tasks and methods of a simple meeting scheduling agent. Rectangular
boxes represent tasks; round boxes represent methods. The circle-and-arrow diagrams
within the round dotted boxes represent the control portion of the methods, i.e., the
transitions and their references to the subtasks.

contained by the meeting scheduler. The meeting scheduling agent contains eight
domain concepts:

– length: A length of time, represented as a number of minutes
– day: A day of the week, e.g. Thursday
– time-of-Day: A time of the day, e.g. 2:00 PM
– time: A moment in time, represented by a combination of the day and time-

of-day domain concepts, e.g., Thursday at 2:00 PM
– time-slot: An interval in time, containing two times: a start time and an end

time, e.g. Thursday at 2:00 PM until Thursday at 3:00 PM
– schedule: A list of time-slots indicating when an individual is busy
– schedule-list: A list of schedules
– time-constraints: A list of time-slots indicating when meetings can be held,

typically Monday through Friday from 9:00 AM to 5:00 PM

A description of a task in TMK explicitly refers to task concepts which
describe the task’s inputs and outputs. These task concepts explicitly refer to the
domain concept of which the designated input or output should be an instance.
For example, the schedule-meeting task has as its output a time slot for which a
meeting should be held; this meeting time slot is a task concept which refers to
the general time-slot domain concept.

The time-constraints domain concept is an example of an explicit representa-
tion of an agent’s constraints. The meeting scheduler has one task concept for the
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time-constraints domain concept. This task concept, slot-generation-constraints,
acts as an input to both the find-first-slot and find-next-slot tasks, constraining
what kind of time slots these tasks can generate. The slot-generation-constraints
task concept illustrates the crucial role that task concepts play in the integration
of TMK models; it serves as the link between the find-first-slot and find-next-slot
tasks which are influenced by the constraints, and the time-constraints domain
concept which models the constraints.

5 Experiment

We describe here a brief experiment which illustrates the behavior of Sirrine2
in a constraint evolution problem. Some time ago, our research group was faced
with the problem of scheduling a weekly meeting to discuss technical issues. Our
goal was to hold a 90 minute meeting. One member of the group sent out email
asking what times people would be available for such a meeting. The members
of the group sent back a list of times during which they were busy.

In order to conduct an experiment with our meeting scheduling agent, we
decided to run the system on this data. The schedules were typed into the meet-
ing scheduler. The scheduler considered a long sequence of 90 minute time slots,
checking each one against the schedules of the people in the group. Every slot
that it considered conflicted with at least one schedule; consequently, the meet-
ing scheduler failed to generate a time for the meeting. Ultimately, it was decided
(by the head of the group) that the meeting would be held on Tuesdays from
4:30 to 6:00 PM, i.e., the assumption that meetings must be held during stan-
dard business hours was violated. At this time, we provided Sirrine2 feedback
informing it of the time that was selected. At this point, the system was able to
do some self-adaptation so that it would have generated this answer in the first
place.

There are many possible changes that can be made which would have lead
to this result. The meeting scheduler could be changed to always schedule meet-
ings on Tuesdays 4:30 to 6:00 PM. Alternatively, it could be made to schedule
meetings on Tuesdays 4:30 to 6:00 PM only when it receives exactly the same
set of schedules as it did in the experiment and to simply use its existing mech-
anisms in all other cases. A reasonable compromise would be to allow meetings
to generally be scheduled until 6:00 PM. However, the current model of the
meeting scheduling domain does not provide sufficient information to identify
a reasonable compromise. Consequently, a simpler change was made in which
the Tuesdays 4:30 to 6:00 slot is suggested whenever a 90 minute time slot is
requested and no other time is available.

During this experiment, the meeting scheduler went through the following
stages:
Execution: The meeting scheduler runs and attempts to solve the problem as
specified. During execution, a trace of reasoning is generated. For this problem,
the agent fails, because it is unable to find a slot which fits into all of the schedules
indicated.
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Feedback Acquisition: Information is provided by the user which indicates
that the slot which should have been selected is Tuesdays from 4:30 to 6:00.
This fact is provided in the form of a desired output knowledge state.

Credit Assignment: If the meeting scheduler fails, as it does in the example,
Sirrine2 attempts to identify a particular procedural element (task or method)
which may be responsible for the failure. This process returns a list of possible
localizations of failure since there may be many possible causes for the observed
result. The element of particular interest in this example is the find-next-slot
task. This task should have produced a time slot but, in the final iteration of
the system, didn’t; because Sirrine2 was given a time slot as feedback, it posits
that the failure of the system may be a result of this task not producing that
time slot. Note that this step is the one which critically depends on the presence
of explicit constraint knowledge; the assignment of credit for the find-next-slot
uses the :input slot of that task to determine that the slot-generation-constraints
task concept influences its results.

Modification: Given a particular failure localization, the modification mech-
anism is intended to make a change to the system which corrects the iden-
tified fault. Figure 2 illustrates the revised meeting scheduler. The primitive
find-next-slot task is modified to be a non-primitive task with two methods: find-
next-slot-base-method simply invokes the existing primitive for finding slots, and
find-next-slot-alternate-method always produces the produces the Tuesdays from
4:30 to 6:00 slot. The :given slot for the alternate method indicates that it is
to be run if and only if a 90 minute time slot is requested under knowledge
conditions similar to the ones found here. Similarity, in this situation, is defined
by the :input slot of the task, i.e., the alternate method is chosen whenever the
values of the task concepts specified in the :input slot exactly match their values
in the earlier execution. The redesign strategy presented here is one example of a
way to expand upon a set of constraints: by providing an alternative functional
element with different constraints and establishing appropriate conditions for
selecting that elements, the overall constraints of the model are expanded.

Execution: Finally, the meeting scheduler is run again with the same set of
schedules. During this execution, the original find-next-slot primitive is run re-
peatedly until no other time is available and then the new primitive is run. Thus
the scheduler correctly finds the Tuesdays from 4:30 to 6:00 slot, confirms that
it does fit the schedules presented, and then terminates successfully.

Note that a specific result of this experiment is that learning is enabled
by the explicit representation of the constraints, combined with the connection
between this representation and the functional descriptions of the computational
units; the task concepts in the TMK models provide the integration of constraint
representation and that representation’s functional role. The learning of new
constraints here takes place with only a single trial; one problem is presented
and one piece of feedback is received. Furthermore, it is done without any direct
mapping from constraint knowledge to final results; the model simply indicates
that the constraints data structure affects the find-first-slot and find-next-slot
tasks. Credit assignment over the model and an execution trace is needed to
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Fig. 2. The revised meeting scheduling agent in which the �nd-next-slot task has been
altered.

determine how the constraints affected the results during the execution. The
modification made is guided by this credit assignment and leads to an enhanced
system whose constraints are consistent with the feedback provided by the user.

6 Discussion

Meeting scheduling is one member of the broad class of scheduling problems.
The issue of learning new constraints seems particularly applicable to scheduling
problems because the nature of many of the constraints is reasonably well de-
fined and understood: the goal is to produce a schedule for one or more actions,
and the constraints are those things that define what actions can potentially
be taken and when. The CAP system [1] explores one approach to the incre-
mental enhancement of a meeting scheduling agent: the system’s autonomous
actions (in this case, suggesting default values for meeting parameters such as
time and location) are treated as classification problems. A set of inductive
machine-learning mechanisms are available in this system to classify situations
in terms of the desired action to take (i.e, the desired default value to suggest).
The machine-learning algorithms used in CAP are very effective at forming use-
ful generalizations over large data sets and require very little explicit domain
knowledge. Unlike the Sirrine2 approach, there is no need to provide a high-
level description of the overall behavior of the system; each individual decision
point acts as an independent classification problem and receives its own direct
feedback. It is not clear, however, how well this approach generalizes to situa-
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tions in which the feedback available has less quantity or less direct connection
to the actual decision made.

In [4] decisions are also treated as separate classification problems. This sys-
tem involves different kinds of decisions (learning over interface actions rather
than over parameter values) and has a different set of learning algorithms (includ-
ing reinforcement learning). However, this system, like CAP, does not possess an
explicit description of the relationships between the elements of the system and
thus is not able to reason across these elements except in regards to tendencies
over very many examples. As in CAP, feedback comes in the form of relatively
non-intrusive observations of actual user actions, which makes it feasible to col-
lect large volumes of data. However, this approach may not be appropriate for
problems such as the one found in our experiment in which the agent performs
comparatively elaborate autonomous reasoning, and only very little information
is provided by the user during the agent’s execution.

Model-based reflection, embodied in Sirrine2 and related systems, is a mech-
anism for developing flexible intelligent agents. One significant alternative to this
approach involves automatically combining agent operations using one of the
many available planning systems [2,6]. The planning approach is a very appeal-
ing one because it does not require a designer at all; a user simply describes the
primitive operations available in a domain (similar to primitive tasks in TMK)
and some goal (similar to a top level task in TMK), and the planning system
combines these operations into a plan for achieving that goal. Also, the plan-
ning system does not require as inputs all of the intermediate levels of methods
and tasks between the overall task and the primitive operations. Furthermore,
a planning system is almost infinitely flexible for a given set of operations; the
system has no preconceived notions of how operations could be combined and
thus can provide a completely new sequence of actions for any new input.

There is, however, a key difference between primitive tasks in TMK and op-
erators in a typical planning system. The :given and :makes slots which describe
the known properties of the inputs and outputs of the primitive can be signif-
icantly underspecified. This makes it possible for some TMK primitives to be
much more complex, coarser grained entities than a planning operator can be.
Furthermore, the planning system which combines fine-grained planning opera-
tors may be prohibitively slow since it has so much information to reason about.
The fact that TMK agents must be designed in advance is a limitation of the
method in that it is a strong knowledge requirement, but it is also a benefit in
that interpreting a predesigned combination of actions is generally much more
efficient that constructing a combination of actions during execution.

Domains which are much more complex then they are dynamic are likely to
be well served by hard-coded software agents which avoid the need for an ex-
plicit model of the domain altogether. Domains which are much more dynamic
than they are complex may be relatively easy to encode in a planning system
which can provide virtually unlimited flexibility. Model-based reflection seems
best suited to domains which present a balance of complexity and dynamics. Sir-
rine2 has been tested on a variety of domains in addition to meeting scheduling.
These domains include web browsing, bookkeeping, and conceptual design. All
of these domains frequently require consistent, repetitive behavior but occasion-
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ally make unpredictable demands which require variations on that behavior. By
using models of processes and adapting them as needed, Sirrine2 is able to
efficiently handle routine situations and effectively react to new challenges.
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Abstract. This paper investigates the methods for learning predictive classifiers
based on Bayesian belief networks (BN) – primarily unrestricted Bayesian net-
works and Bayesian multi-nets.  We present our algorithms for learning these
classifiers, and discuss how these methods address the overfitting problem and
provide a natural method for feature subset selection.  Using a set of standard
classification problems, we empirically evaluate the performance of various
BN-based classifiers. The results show that the proposed BN and Bayes multi-
net classifiers are competitive with (or superior to) the best known classifiers,
based on both BN and other formalisms; and that the computational time for
learning and using these classifiers is relatively small. These results argue that
BN-based classifiers deserve more attention in the data mining community.

1   Introduction

Classification is the task of identifying the class labels for instances based on a set of
features (attributes). Learning accurate classifiers from pre-classified data is a very
active research topic in machine learning and data mining.  In the past two decades,
many algorithms have been developed for learning decision-tree and neural-network
classifiers. While Bayesian networks (BNs) [22] are powerful tools for knowledge
representation and inference under conditions of uncertainty, they were not considered
as classifiers until the discovery that Naïve-Bayes, a very simple kind of BNs that
assumes the attributes are independent given the class node, are surprisingly effective
[17].

This paper further explores this role of BNs. Section 2 provides the framework of
our research, introducing Bayesian networks and Bayesian network learning and then
briefly describing five classes of BNs. Section 3 describes our methods for learning
unrestricted BNs. It also describes our approaches to avoiding overfitting and to se-
lecting feature subsets. Section 4 presents and analyzes our experimental results over a
standard set of learning problems obtained from the UCI machine learning repository.

                                                          
1 Previous work done at the University of Alberta.
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2   Framework

2.1   Bayesian Networks

A Bayesian network Q= ,, ANB  is a directed acyclic graph (DAG) AN ,  where

each node Nn ˛  represents a domain variable (eg, a dataset attribute), and each arc
Aa ˛  between nodes represents a probabilistic dependency, quantified using a condi-

tional probability distribution (CP table) Q˛iq for each node ni (see [22]).  A BN can

be used to compute the conditional probability of one node, given values assigned to
the other nodes; hence, a BN can be used as a classifier that gives the posterior prob-
ability distribution of the class node given the values of other attributes. A major ad-
vantage of BNs over many other types of predictive models, such as neural networks,
is that the Bayesian network structure explicitly represents the inter-relationships
among the dataset attributes (Fig. 7). Human experts can easily understand the net-
work structures and if necessary modify them to obtain better predictive models.  By
adding decision nodes and utility nodes, BN models can also be extended to decision
networks for decision analysis [20].

Applying Bayesian network techniques to classification involves two sub-tasks: BN
learning (training) to get a model and BN inference to classify instances. In Section 4,
we will demonstrate that learning BN models can be very efficient. As for Bayesian
network inference, although it is NP-hard in general [7], it reduces to simple multipli-
cation in our classification context, when all the values of the dataset attributes are
known.

2.2   Learning Bayesian Networks

The two major tasks in learning a BN are: learning the graphical structure, and then
learning the parameters (CP table entries) for that structure.  As it is trivial to learn the
parameters for a given structure that are optimal for a given corpus of complete data –
simply use the empirical conditional frequencies from the data [8] – we will focus on
learning the BN structure.

There are two ways to view a BN, each suggesting a particular approach to learn-
ing. First, a BN is a structure that encodes the joint distribution of the attributes. This
suggests that the best BN is the one that best fits the data, and leads to the scoring-
based learning algorithms, which seek a structure that maximizes the Bayesian, MDL
or Kullback-Leibler (KL) entropy scoring function [13][8].

Second, the BN structure encodes a group of conditional independence relation-
ships among the nodes, according to the concept of d-separation [22]. This suggests
learning the BN structure by identifying the conditional independence relationships
among the nodes.  These algorithms are referred as CI-based algorithms or constraint-
based algorithms [23][1].

Friedman et al. [10] show theoretically that the general scoring-based methods may
result in poor classifiers since a good classifier maximizes a different function – viz.,
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classification accuracy. Greiner et al. [12] reach the same conclusion, albeit via a
different analysis. Moreover, the scoring-based methods are often less efficient in
practice. This paper demonstrates that the CI-based learning algorithms can effectively
learn BN classifiers.

2.3   Bayesian Network Classifiers

We will consider the following five classes of BN classifiers: Naïve-Bayes, Tree aug-
mented Naïve-Bayes (TANs), Bayesian network augmented Naïve-Bayes (BANs),
Bayesian multi-nets and general Bayesian networks (GBNs).

Naïve-Bayes. A Naïve-Bayes BN, as discussed in [9], is a simple structure that has the
class node as the parent node of all other nodes (see Fig. 1.a).  No other connections
are allowed in a Naïve-Bayes structure.

Naïve-Bayes has been used as an effective classifier for many years.  As Naïve-
Bayes assumes that all the features are independent of each other, these BN-based
classifiers are easy to construct, as no structure learning procedure is required. Al-
though this independence assumption is obviously problematic, Naïve-Bayes has sur-
prisingly outperformed many sophisticated classifiers over a large number of datasets,
especially where the features are not strongly correlated [17].

In recent years, a lot of effort has focused on improving Naïve-Bayesian classifiers,
following two general approaches: selecting feature subset [18][14][21] and relaxing
independence assumptions [16][10].  Below we introduce BN models that extend
Naïve-Bayes in the second fashion, by allowing dependencies among the features.

c

x1 x2 x3 x4

(a)

c

x1 x2 x3 x4

(b)

c

x1

x2

x3 x4

(c)

Fig. 1. (a) Naïve-Bayes. (b) Tree Augmented Naïve-Bayes. (c) BN Augmented Naïve-Bayes.

Tree Augmented Naïve-Bayes (TAN). TAN classifiers extend Naïve-Bayes by
allowing the attributes to form a tree – cf, Fig. 1.b: here c is the class node, and the
features 4321 ,,, xxxx , without their respective arcs from c, form a tree.  Learning such
structures can be easily achieved by using a variation of the Chow-Liu [6] algorithm.
The performance of TAN classifiers is studied in [10][5].

BN Augmented Naïve-Bayes (BAN). BAN classifiers extend TAN classifiers by
allowing the attributes to form an arbitrary graph, rather than just a tree [10] – see Fig.
1.c. Learning such structures is less efficient. Friedman et al. [10] presents a minimum
description length scoring method for learning BAN. Cheng and Greiner [5] study a
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different algorithm based on conditional independence (CI) tests.  Both papers also
investigate the performance of BAN classifiers.

Bayesian Multi-net. Bayesian Multi-nets were first introduced in [11] and then stud-
ied in [10] as a type of classifiers. A Bayesian multi-net is composed of the prior
probability distribution of the class node and a set of local networks, each corre-
sponding to a value that the class node can take (see Fig. 2.a). Bayesian multi-nets can
be viewed as a generalization of BANs. A BAN forces the relations among the fea-
tures to be the same for all the values that the class node takes; by contrast a Bayesian
multi-net allows the relations among the features to be different – i.e., for different
values the class node takes, the features can form different local networks with differ-
ent structures.  In a sense, the class node can be also viewed as a parent of all the fea-
ture nodes since each local network is associated with a value of the class node.  Note
that these multi-net structures are strictly more expressive than Naïve-Bayes, TAN or
BAN structures. To motivate this, consider the tasks in pattern recognition – different
patterns may have different relationships among features.

As the multi-net structure imposes no restrictions on the relationships among the
attributes, they are a kind of unrestricted BN classifier.  However, while multi-net is
more general than BAN, it is often less complex than BAN since some of the local
networks can be simpler than others, while BAN needs to have a complex structure in
order to express all the relationships among the features.

x1

x2

x3 x4 x1

x2

x3 x4

C = C1 C = C2

(a)

cx1

x2

x3

x4

(b)

Fig. 2. (a) Bayesian Multi-net. (b) General Bayesian net.

General Bayesian Network (GBN). GBN is another kind of unrestricted BN classi-
fier, however, of a different flavor. A common feature of Naïve Bayes, TAN, BAN
and multi-net is that the class node is treated as a special node – the parent of all the
features. However, GBN treats the class nodes as an ordinary node (see Fig. 2.b), it is
not necessary a parent of all the feature nodes. The learning methods and the perform-
ance of GBN for classification are studied in [10][5].

Comparison: To compare GBNs and Bayesian multi-nets, observe that GBNs assume
that there is a single probabilistic dependency structure for the entire dataset; by con-
trast, multi-nets allow different probabilistic dependencies for different values of the
class node.  This suggests that GBN classifiers should work better when there is a
single underlying model of the dataset and multi-net classifier should work better
when the underlying relationships among the features are very different for different
classes.
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2.4   Motivations

In our earlier work [5], we studied the CI-based methods for learning GBN and BAN
and showed that our CI-based methods appear not to suffer from the drawbacks of
scoring-based methods (see Section 2.2). With a wrapper algorithm (see Section 3.2),
these more general types of BN classifiers do work well.  This paper continues our
research in BN classifiers in the following aspects.
1. Our earlier work suggested that the more general forms of BN classifiers can cap-

ture the relationships among the features better and therefore make more accurate
predictive models.  However, it did not consider an important class of BN classifi-
ers – Bayesian multi-net.  Here we evaluate its learning efficiency and performance
for classification.

2. A node ordering specifies an order of the nodes, with the understanding no node
can be an ancestor of a node that appears earlier in the order.  Our earlier work as-
sumed this node ordering was given.  Here we investigate the effect of such order-
ings by learning the BN classifiers with and without node orderings.

3. The learned GBN structure immediately identifies the relevant feature subset – the
Markov blanket (Section 3.3) around the class node.  Here we study the effective-
ness of such feature subsets by using it to simplify Bayesian multi-net classifiers.

3   Learning Unrestricted BN Classifiers

This section presents algorithms for learning general Bayesian networks and Bayesian
multi-nets.  It also presents the wrapper algorithm that can wrap around these two
learners to help find good settings for the “independence test threshold”, and an algo-
rithm for learning multi-nets using feature subsets.

3.1 The Learning Algorithms for Multi-nets and GBNs

Fig. 3 and Fig. 4 sketches the algorithms for learning multi-nets and GBNs.  They
each use the CBLi algorithms, which are general purpose BN-learning algorithms: one
for the case when node ordering is given (the CBL1 algorithm [1]); the other for the
case when node ordering is not given (the CBL2 algorithm [2]).

Both CBL1 and CBL2 are CI-based algorithms that use information theory for de-
pendency analysis. CBL1 requires )( 2NO  mutual information tests to learn a general

BN over N attributes, and CBL2 requires )( 5NO  mutual information tests. The effi-
ciency of these algorithms is achieved by a three-phase BN learning algorithm: draft-
ing, which is essentially the Chow-Liu [6] tree construction algorithm; thickening,
which adds edges to the draft; and thinning, which removes unnecessary edges.  As
these learners use a finite set of samples, they need to use some threshold +´˛t when
determining whether some statistical condition is met (see below).  Modulo this issue,
these algorithms are guaranteed to learn the optimal structure, when the underlying
model of the data satisfies certain benign assumptions. For the correctness proof,
complexity analysis and other detailed information, please refer to [1][2].
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MNi(S: training set;  F: feature set; [O: Node Ordering]):
       returns Bayesian Multi-net
1. Partition the training set into subsets Si, by the values of the

class node.
2. For each training subset Si,

Call BN-structure learning algorithm CBLi  on   S, F  (and O if
i=1)
Compute the parameters (using observed frequencies) of each local
network.

3. Estimate the prior probability distribution of the class node.

Fig. 3. The MNi Algorithm.

GBNi(S: training set;  F: feature set; [O: Node Ordering]):
      returns general BN
1. Call BN-structure learning algorithm CBLi  on   S, F  (and O if

i=1)
2. Find the Markov blanket  B ² F  of the class node.
3. Delete all the nodes that are outside the Markov blanket.
4. Compute the parameters (using observed frequencies)

Fig. 4. The GBNi Algorithm.

3.2   The Wrapper Algorithm

Unlike Naïve-Bayes and TAN learners, there is no restriction on the structures that the
GBN learner and multi-net learner can learn.  Therefore, it is possible that a BN model
will overfit – ie, fit the training set too closely instead of generalizing, and so will not
perform well on data outside the training samples.  In [5], we proposed a wrapper
algorithm to determine the best setting for the threshold t ; we observed that this
increased the prediction accuracy up to 20% in our experiments.  Suppose X-learner is
a learning algorithm for classifier X, the wrapper algorithm can wrap around X-
learner in the following way.

Wrapper (X-learner: LearningAlgorithm, D: Data): returns Classifier
1. Partition the input training set D = T  H  into internal train-

ing set T and internal holdout set H.
2. Call X-learner on the internal training set T  m times, each

time using a different threshold setting it ; this produces a set

of m classifiers { BNi }

3. Select a classifier BN* = ** ,, qAN { }iBN˛  that performs best on

the holdout set H.

4. Keep this classifier’s structure *, AN  and re-learn the parame-

ters (conditional probability tables) Q ¢  using the whole train-
ing set D.

5. Output this new classifier.

Fig. 5. The wrapper algorithm.

When the training set is not large enough, k-fold cross validation should be used to
evaluate the performance of each classifier.  This wrapper algorithm is fairly efficient
since it can reuse all the mutual information tests. Note that mutual information tests
often take more than 95% of the running time of the BN learning process [2].
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3.3   Feature Subset Selection

Overfitting often happens when there are too many “parameters”, for a given quantity
of data.  Here, this can happen if there are too many nodes, and hence too many
CPtable entries.  One way to reduce the chance of this happening is by considering
only a subset of the features; this is called “feature selection”, and is an active research
topic in data mining.  For example, Langley and Sage [18] use forward selection to
find a good subset of attributes; Kohavi and John [15] use best-first search, based on
accuracy estimates, to find a subset of attributes.

A byproduct of GBN learning is that we can get a set of features that form the
Markov blanket of the class node. The Markov blanket of a node n is the union of n’s
parents, n’s children, and the parents of n’s children. This subset of nodes “shields” n
from being affected by any node outside the blanket. When using a BN classifier on
complete data, the Markov blanket of the class node forms a natural feature selection,
as all features outside the Markov blanket can be safely deleted from the BN. This can
often produce a much smaller BN without compromising the classification accuracy.

To examine the effectiveness of such feature subset, we use it to simplify the multi-
net learner. The algorithm is described below.

MN-FSi(S: training set;  F: feature set; [O: Node Ordering]):
       returns Bayesian Multi-net
1. Call Wrapper( GBNi ) with the training set S and all features

F.
2. Get the Markov blanket B ² N of the class node.
3. Call Wrapper (MNi) with the training set S  and the feature

subset B.

4. Output the multi-net classifier.

Fig. 6. The MN-FSi algorithm.

4   Empirical Study

4.1   Methodology

Our experiments involved five datasets downloaded from the UCI machine learning
repository [19] – see Table 1.  When choosing the datasets, we selected datasets with
large numbers of cases, to allow us to measure the learning and classification effi-
ciency. We also preferred datasets that have few or no continuous features, to avoid
information loss in discretization and to be able to compare the learning accuracy with
other algorithms fairly. When we needed to discretize the continuous features, we used
the discretization utility of MLC++ [14] on the default setting.

Table 1. Datasets used in the experiments.

Dataset Attributes. Classes Instances
Train Test

Adult 13 2 32561 16281
Nursery 8 5 8640 4320

Mushroom 22 2 5416 2708
Chess 36 2 2130 1066
DNA 60 3 2000 1186
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The experiments were carried out using our Bayesian Network PowerPredictor 1.0
[4]. For each data set, we learned six BN classifiers: Wrapper(GBN) = W-GBN,
Wrapper(GBN with ordering) = W-GBN-O, Wrapper(multi-net) = W-MN, Wrap-
per(multi-net with ordering) = W-MN-O, Wrapper(multi-net with feature selection) =
W-MN-FS and Wrapper(multi-net with feature selection with ordering) = W-MN-FS-
O.  The ordering for the Chess data set is the reversed order of the features that appear
in the data set since it is more reasonable, the ordering we use for other data sets are
simply the order of the features that appear in the data set. For the GBN learner, we
also assume that the class node it is a root node in the network.

The classification process is also performed using BN PowerPredictor.  The classi-
fication of each case in the test set is done by choosing, as class label, the value of
class variable that has the highest posterior probability, given the instantiations of the
feature nodes.  The classification accuracy is defined as the percentage of correct
predictions on the test sets (i.e., using a 0-1 loss function).

The experiments were performed using a Pentium II 300 MHz PC with 128MB of
RAM, running MS-Windows NT 4.0.

4.2   Results

Table 2 provides the prediction accuracy and standard deviation of each classifier.  We
ordered the datasets by their training sets from large to small. The best results of each
dataset are emphasized using a boldfaced font. Table 2 also gives the best results re-
ported in the literature on these data sets (as far as we know). To get an idea of the
structure of a learned BN classifier, please see Figure 7.

From Table 2 we can see that all six unrestricted BN classifiers work quite well.
Bayesian multi-net works better on Nursery and Mushroom; while GBN works better
on DNA. The two types of classifiers have similar performance on Adult and Chess.
This suggest that some data sets are more suitable for multi-net classifiers while others
are more suitable for GBN, depending on whether the underlying relationships among
the features are different for different class node values.

We can also see that the feature ordering does not make much difference to the per-
formance of the classifiers. We also tried to provide the BN learners with obviously
wrong ordering.  Its effect to the classifier’s performance is very small. However, with
wrong ordering, the classifiers tend to be more complex.

By comparing the performance of the multi-nets without feature selection to the
multi-nets with feature selection, we can see that the difference is quite small. How-
ever, the multi-nets with feature selection are much simpler. By comparing the run-
ning time of learning these classifiers (see Table 3), we can see that multi-nets with
feature selection can be learned faster.

Table 3 gives the total learning time of each BN classifier using the wrapper algo-
rithm. Because the feature ordering makes little difference on the efficiency, we only
give the running time of the learning procedure without the ordering. (In practice,
CBL1 and CBL2 are both linear in the number of instances and appear )( 2NO  in the

number of features N.) The table shows that all BN classifiers can be learned effi-
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ciently as the longest learning time is less than 25 minutes.  Note that the running time
for learning the multi-nets with feature selection includes the running time for learning
GBN in the first step of the feature subset selection algorithm (see Section 3.3). In
general, the wrapper algorithm is about 3 to 5 times slower than only using the learner
alone, even though the wrapper algorithm usually tries 7 to 15 different models before
it output the best performer.

Table 2. The results of unrestricted BN classifiers(The numbers in the parentheses are the
number of selected features / total number of features).

W-GBN W-GBN-O W-MN W-MN-O W-MN-FS -MN-FS-O Bestre-
ported

Adult 86.33±0.53
(7/13)

85.88±0.53
(8/13)

84.83±0.55 85.54±
    0.54

85.79±0.54
(7/13)

85.46
±0.54
(8/13)

85.95

Nurs-
ery

91.92±0.81
(8/8)

91.60±0.83
(8/8)

97.13±0.50 97.31±
0.48

Same as
 W-MN

Same as
W-MN-
O

N/A

Mush
room

98.67±0.43
(7/22)

98.74±0.42
(5/22)

99.96±0.07 100 98.67±0.43
(7/22)

99.11
±0.35
(5/22)

100

Chess 93.53±1.48
(11/36)

93.62±1.47
(11/36)

96.44±1.11 94.56
±1.36

93.25±1.51
(11/36)

93.4
3±1.49
(11/36)

99.53
±0.21

DNA 95.70±1.15
(14/60)

96.63±1.03
(15/60)

94.10±1.34 93.51
±1.40

95.36±1.20
(14/60)

95.70
±1.15
(15/60)

96.12
±0.6

Table 3. Running time (CPU seconds) of the classifier learning procedures.

W-GBN W-MN W-MN-FS
Adult 1046 1466 1200

Nursery 54 79 N.A.
Mushroom 322 533 345

Chess 84 163 109
DNA 210 1000 266

In our experiments, we found that the classification process is also very efficient.
PowerPredictor can perform 200 to over 1000 classifications per second depending on
the complexity of the classifier.

5   Conclusion

In this paper, we studied two types of unrestricted BN classifiers – general BNs and
Bayesian multi-nets. The results show that our CI-based BN-learning algorithms are
very efficient, and the learned BN classifiers can give very good prediction accuracy.

This paper also presents an effective way for feature subset selection. As we illus-
trate in Figure 7, the BN classifiers are also very easy to understand for human being.
By checking and modifying the learned BN predictive models, domain experts can
study the relationships among the attributes and construct better BN predictive models.
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Based on these results we believe that the improved types of BN classifiers, such as
the ones shown here, should be used more often in real-world data mining applica-
tions.

S alary

A ge C aptia l_ga in

C aptia l_loss

Oc c u patio n M ar ital_sta tus

E du c atio n

Rela tions hip

Fig. 7. The learned W-GBN classifier for “Adult” data set.
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Abstract. We propose an improved scoring metrics for learning belief
networks driven by issues arising from learning in pseudo-independent
domains. We identify a small subset of variables called a crux, which is
sufficient to compute the incremental improvement of alternative belief
network structures. We prove formally that such local computation,
while improving efficiency, does not introduce any error to the evaluation
of alternative structures.

Keywords: Knowledge discovery, data mining, machine learning, belief
networks, uncertain reasoning.)

1 Introduction

Learning belief networks from data has been an active research area in recent
years [2,7,4,15,3]. Successive graphical structures are evaluated with a scoring
metrics until a stopping condition is met. As the task is NP-hard [1], a common
method in selection the structure is the single-link lookahead, where successive
structures adopted differ by a single link. It has been shown that a class of
probabilistic models called pseudo-independent (PI) models cannot be learned
by single-link search [14]. A more sophisticated method (multi-link lookahead)
is proposed in [15] and is improved in [5] for learning decomposable Markov
networks (DMNs) from data.

DMNs are less expressive than Bayesian networks (BNs). However, DMNs
are the runtime representation of several algorithms for inference with BNs [8,6,
10], and can be the intermediate results for learning BNs. For example, learning
PI models needs multi-link lookahead and the search space for DAGs is much
larger than that of chordal graphs. Learning DMNs first can then restrict the
search for DAGs to a much smaller space, improving the efficiency.

In this work, we focus on learning DMNs using the entropy score which
is closely related to other scoring metrics [15] such as Bayesian [2], minimum
description length (MDL) [7], and conditional independence [9,11]. The score of
a DMN is defined as the entropy of the DMN computed from its joint probability
distribution (jpd). Previous work [15,5,13] used entropy score as the sole control
of both goodness-of-fit and complexity of the output structure. An increment

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 152–161, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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threshold ∆h of the entropy score is set by the user. Learning stops when no
structure (allowed by the given lookahead search) can improve the score beyond
∆h. The smaller the value of ∆h, the better the goodness-of-fit of the output
structure, and the more complex the structure is.

Such stopping control works fine with the single-link lookahead. However, an
issue arises when multi-link lookahead is performed: It is possible at some point of
learning that a best single link may produce a score improvement 0.0099 and get
rejected since ∆h = 0.01. On the other hand, a best double-link that produces a
score improvement of 0.01 will be adopted. It can be argued that the double-link
increases the complexity of the structure much more than it contributes to the
goodness-of-fit. Hence if any link is to be added at all, a single link is a better
choice than a double-link. However, using the entropy improvement as the sole
stopping control, this issue cannot be resolved.

In this work, we address this issue by explicitly describing the model com-
plexity in the score (a common approach in learning). We define a new score
as

Γ (M) = Γ1(M) + α Γ2(M) ,

where M is a DMN, Γ1(M) measures the goodness-of-fit of M , and Γ2(M) mea-
sures the complexity of M . The constant α is set by the user to trade goodness-
of-fit with the complexity of the output DMN. Learning stops when no DMN
M ′ can improve Γ (M) for the current DMN M . Hence, threshold is no longer
needed. The above issue will be resolved since the single link will improve Γ (M)
more than the double link.

In the rest of the paper, we propose how to compute the incremental change
in Γ (M) due to link addition by local computation using a small subset of
variables called crux. We prove the correctness of the algorithms formally.

2 Background

Let G = (V, E) be a graph, where V is a set of nodes and E a set of links. A
graph is a forest if there are no more than one path between each pair of nodes.
A forest is a tree if it is connected. A set X of nodes is complete if elements of
X are pairwise adjacent. A maximal set of nodes that is complete is a clique. A
path or cycle ρ has a chord if there is a link between two non-adjacent nodes in
ρ. G is chordal if every cycle of length ≤ 4 has a chord.

A cluster graph is a triplet (V, Ω, S), where V is called a generating set, Ω is
a set of nodes each of which is labeled by a nonempty subset of V and is called a
cluster, S is a set of links each of which is labeled by the intersection of the two
clusters connected and is called a separator. A cluster forest is a junction forest
(JF) if the intersection of every pair of connected clusters is contained in every
cluster on the path between them. Let G = (V, E) be a chordal graph, Ω be the
set of cliques of G, and F be a JF (V, Ω, S). We will call F a corresponding JF
of G. Such a JF exists if and only if G is chordal.

A DMN is a triplet M = (V, G,P), where V is a set of discrete variables in
a problem domain, and G = (V, E) is a chordal graph. P is a set of probability



154 Y. Xiang and J. Lee

distributions one for each cluster defined as follows: Let F be a corresponding
JF of G. Direct links of F such that each cluster has no more than one parent
cluster. For each cluster C with a parent Q, associate C with P (C|Q). The jpd
of M is defined as P (V ) =

∏
C P (C|Q). Probabilistic conditional independence

among variables in V is conveyed by node separation in G, and by separator
separation in F . It has been shown [12] that G and F encode exactly the same
dependence relations within V . Hence, we will switch between the two graphical
views from time to time.

3 Local Computation for Measure of Goodness-of-Fit

The goodness-of-fit of a DMN M to an underlying (unknown) domain model
can be measured by the K-L cross entropy between them. It has been shown [15]
that to minimize the K-L cross entropy, it suffices to minimize the entropy of M
which can be computed as

HM (V ) =
∑

C

H(C) −
∑

S

H(S) , (1)

where C is a cluster in the corresponding JF and S is a separator. Hence we
shall use the entropy of a DMN M as the measure of goodness-of-fit, denoted as
Γ1(M) = HM (V ).

During learning, a large number of alternative DMN structures need to be
evaluated using the score. Since most of the clusters and separators do not
change between successive structures, it is inefficient to compute the entropy of
all of them for each structure. It is much more efficient to identify a small set of
clusters and separators that contribute to the incremental change of the score
after a set of links has been added to the current structure. In the following, we
study how these clusters and separators can be identified effectively.

First, we define the context in which the learning takes place: At each step
of learning, a set of links L is added to the current structure G to obtain a
supergraph G′ of G. The cardinality |L| depends on whether it is single-link
lookahead (|L| = 1) or multi-link lookahead (|L| > 1). The initial G at the start
of learning is an empty (chordal) graph. We require that at each step, G′ is
also a chordal graph and the endpoints ED of L are contained in a clique of
G′. We shall call G′ the chordal supergraph of G induced by L. We denote the
corresponding JF of G′ by F ′.

4 The Notion of Crux

In this section, we identify a small subset of V called crux that are defined by
the structural change due to adding links L to a chordal graph. We establish
some properties of crux. In the next section, we show that the crux is a sufficient
subset of variables necessary to compute the incremental change of of entropy.
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Lemma 1 Let G be a chordal graph and G′ be a chordal supergraph of G induced
by a set L of links. Then the clique that contains ED, the set of endpoints of L,
is unique.

Proof:
Suppose that two distinct cliques C and Q exist in G′ that contain ED. Then

there exist c ∈ C and q ∈ Q such that c 6∈ Q and q 6∈ C. That is, {c, q} is not a
link in G′ and hence not in G as well.

Let {x, y} be any link in L. Since x, y and c are all in C, they must be
complete in G′. Since {x, c} and {y, c} are not in L, they must be links in G.
Similarly, {x, q} and {y, q} must be links in G. We have therefore found a cycle
(x, c, y, q, x) in G and neither {x, y} nor {c, q} is a link in G: a chordless cycle.
This contradicts that G is chordal. 2

Definition 2 Let G be a chordal graph and G′ be a chordal supergraph of G
induced by a set L of links. Let C be the unique clique in G′ that contains the
endpoints of L. Let Q be any clique of G′ such that Q ∩ C 6= ∅ and Q is not a
clique in G. Denote the set of all such cliques by Φ. Then the union of elements
in Φ, namely,

⋃
Q∈Φ Q is called the crux induced by G and L, and the set Φ is

called the generating set of the crux.

Note that the crux contains C. Note also that since each pair of cliques in
a chordal graph is incomparable, given the crux R, its generating set Φ can be
uniquely identified.

Figure 1 illustrates the concept of crux in different cases. In each box, the
upper graphs are chordal graphs G and G′ where dashed link(s) indicate the set
L of links added. The lower graphs in each box depict the corresponding JFs
where the dashed cluster(s) form the generating set Φ. For example, in (a) and
(b), the generating set Φ contains only a single cluster which is the crux itself.
In (c), however, Φ consists of {b, c, f} and {c, e, f} while the crux is {b, c, e, f}.

The following proposition says that each clique in Φ contains the endpoints
of at least one link in L, and Φ is made of all such cliques.

Proposition 3 Let G be a chordal graph and G′ be a chordal supergraph of G
induced by a set L of links. Let R be the crux induced by G and L and Φ be its
generating set.

1. For each Q ∈ Φ, there exists a link {x, y} ∈ L such that {x, y} ⊂ Q.
2. For each clique Q in G′, if there exists a link {x, y} ∈ L such that {x, y} ⊂ Q,

then Q ∈ Φ.

Proof:
(1) Suppose for Q ∈ Φ, no such {x, y} is contained in Q. Then Q is not a

clique newly created or enlarged by the addition of L to G. That is, G is a clique
in G: contradiction to Q ∈ Φ.

(2) Let Q be a clique in G′ such that the stated condition holds. The Q∩C 6= ∅
and Q is not a clique in G. 2
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Fig. 1. Illustration of crux

The following proposition shows that the crux is in fact the union of all
cliques newly formulated due to the addition of L. In the proposition, “\” is the
set difference operator.

Proposition 4 Let G be a chordal graph and G′ be a chordal supergraph of G
induced by a set L of links. Let Ω be the set of cliques in G, Ω′ be the set of
cliques in G′, R be the crux induced by G and L, and Φ be the generating set of
R. Then Φ = Ω′ \ Ω.

Proof:
Each clique contained in R is in Ω′ \ Ω by the definition of crux. We only

need to show that each Q ∈ Ω′ \ Ω is also contained in R, that is Q ∩ C 6= ∅,
where C is the unique clique in G′ that contains endpoints ED of L. Each clique
Q in G′ that is created or is modified from cliques of G due to adding L must
contain elements of ED, and hence Q ∩ C 6= ∅. 2

Although Proposition 4 gives a much simplier definition of crux, Definition 2
allows more efficient computation of the crux. Based on Proposition 4, the crux
can be obtained by computing Ω′\Ω. The complexity is O(|Ω|2) since |Ω′| ≈ |Ω|.
On the other hand, based on Definition 2, one pass through Ω′ is needed to find
C, another pass is needed to find cliques intersecting with C (assuming k such
cliques are found), and additional k passes through Ω are needed to identify the
newly created or enlarged cliques. The complexity is O((k + 2) |Ω|). The value
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of k is usually a very small integer. Hence for large problem domains, k + 2 is
much smaller than |Ω|. Since the crux needs be obtained for every structure to
be evaluated, significant computational savings can be obtained if Definition 2
is followed.

The following proposition says that the generating set of the crux forms a
subtree in F ′.

Proposition 5 Let G be a chordal graph and G′ be a chordal supergraph of G
induced by a set L of links. Let R be the crux induced by G and L and F ′ be the
corresponding JF of G′. The generating set Φ of R forms a connected subtree in
F ′.

Proof:
We prove by contradiction. Let C be the unique clique of G that contains

endpoints ED of L. Suppose that members of Φ do not form a connected subtree
in F ′. Then there exists a cluster Q ∈ Φ and a cluster Z 6∈ Φ such that Z is on the
path between C and Q in F ′. This implies Z ⊃ C ∩ Q. By Proposition 3, there
exists {x, y} ∈ L such that {x, y} ⊂ Q. By Lemma 1, we also have {x, y} ⊂ C.
Therefore, we have {x, y} ∈ Z. By Proposition 3, this implies that Z ∈ Φ: a
contradiction. 2

5 Sufficient Subdomain for Entropy Score Computation

The following proposition shows that if the two corresponding junction forests
F and F ′ share some clusters, then there exists one such cluster that is terminal
in F ′.

Proposition 6 Let G be a chordal graph and G′ be a chordal supergraph of G
induced by a set L of links. Let F and F ′ be the corresponding JF of G and G′,
respectively. If F ′ shares clusters with F , then at least one of them is terminal
in F ′.

Proof:
Suppose the conclusion does not hold. Let R be the crux induced by G and

L. Then the generating set of R will not form a connected subtree in F ′: a
contradiction with Proposition 5. 2

The following proposition says that if a cluster shared by F and F ′ is terminal
in F ′, then its boundary is complete and identical in both chordal graphs, G and
G′.

Proposition 7 Let G be a chordal graph and G′ be a chordal supergraph of G
induced by a set L of links. Let F and F ′ be the corresponding JF of G and G′,
respectively. Let Q be a cluster shared by F and F ′, and is terminal in F ′. Then
the boundary between Q and V \ Q in both G and G′ is complete and identical.
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Proof:
Since Q is terminal in F ′, its boundary with V \ Q in G′ is complete. Since

Q is shared by F and F ′, it does not contain any {x, y} ∈ L by Propositions 3
and 4. Hence, its boundary with V \ Q in G was not altered by adding L to G.
This implies that its boundary with V \ Q in G is identical to that in G′. 2

The following proposition shows that the increment of entropy score can be
correctly computed without variables in a shared terminal cluster. Let G be the
structure of a DMN M over V . Let Q be a clique in G with a complete boundary
S. If we remove variables Q\S from V and remove the corresponding nodes from
G, the resultant graph is still chordal and is a valid structure of a DMN. We call
the resultant DMN a reduced DMN.

Proposition 8 Let G be the structure of a DMN M over V and G′ be the
structure of another DMN M ′ that is a chordal supergraph of G induced by a set
L of links. Let H(V ) and H ′(V ) be the entropy of M and M ′, respectively. Let
Q be a cluster shared by F and F ′, and is terminal in F ′. Let S be the separator
of Q in F ′. Then δh = H(V ) − H ′(V ) can be computed using reduced DMNs
where variables in V \ (Q \ S) are removed.

Proof:
Denote V ∗ = V \ (Q \ S). Since S is the boundary of Q in G′, we have

H ′(V ) = H ′(V ∗) + H(Q) − H(S) ,

where H ′(V ∗) is the entropy of the DMN obtained by removing variables Q \ S
from M ′. By Proposition 7, S is also the boundary of Q in G. We have

H(V ) = H(V ∗) + H(Q) − H(S) ,

where H(V ∗) is the entropy of the DMN obtained by removing variables Q \ S
from M . Hence δh = H(V ) − H ′(V ) = H(V ∗) − H ′(V ∗). 2

By recursively applying Proposition 8, the following theorem establish the
correctness of local computation for the incremental entropy score.

Theorem 9 Let G be the structure of a DMN M over V and G′ be the structure
of another DMN M ′ that is a chordal supergraph of G induced by a set L of
links. Let H(V ) and H ′(V ) be the entropy of M and M ′, respectively. Then
the crux R induced by G and L is a sufficient subset of V needed to compute
δh = H(V ) − H ′(V ).

Proof:
Let F be the corresponding JF of G, and F ′ be that of G′. If F and F ′

have shared clusters, by Proposition 6 a terminal cluster Q shared by F and F ′

can be found. Denote the separator of Q in F ′ by S and V ∗ = V \ (Q \ S). By
Proposition 8, δh can be computed as H(V ∗)−H ′(V ∗). By recursively applying
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Propositions 6 and 8, eventually we can remove all clusters shared by F and
F ′. The remaining clusters is the generating set Φ of R, and hence δh can be
computed as δh = H(R) − H ′(R). 2

Theorem 9 suggests the following method to compute δh by local computa-
tion: First compute the crux R based on Definition 2. Then compute the sub-
graphs of G and G′ spanned by R. Convert the subgraphs into junction forest
representations and compute δh using equation 1.

6 Complexity of a Decomposable Markov Network

We now shift to the computation of the complexity of a DMN, which we define as
the total number of unconstrained parameters needed to specify P. We denote
the space of a set X of variables by DX . The following Lemma derives the
complexity of two adjacent cluster representations in a DMN. Due to space
limit, the proofs for all formal results on the complexity will be included in a
longer version of this paper.

Lemma 10 Let C be a cluster in the junction forest representation of a DMN,
Q be its terminal parent, and S be their separator. Then the total number of
unconstrained parameters required to specify P (C ∪Q) is |DC |+ |DQ|− |DS |−1.

The following theorem derives the complexity of a DMN whose structure is
a JT.

Theorem 11 Let Ω be the set of clusters in the junction tree representation of
a DMN over variables V and Ψ be the set of separators. Then the total number
of unconstrained parameters needed to specify P (V ) is

N =
∑

Ci∈Ω

|DCi
| −

∑

Sj∈Ψ

|DSj
| − 1 .

The following corollary extends Theorem 11 on the complexity of a JT rep-
resentation to a junction forest representation.

Corollary 12 Let Ω be the set of clusters in a junction forest representation of
a DMN over V and Ψ be the set of separators. Let the junction forest consist of
k junction trees. Then the total number of unconstrained parameters needed to
specify P (V ) is

N =
∑

Ci∈Ω

|DCi | −
∑

Sj∈Ψ

|DSj | − k .

Based on Corollary 12, we have the measure of complexity of a DMN M as

Γ2(M) =
∑

Ci∈Ω

|DCi
| −

∑

Sj∈Ψ

|DSj
| − k .
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7 Local Computation of DMN Complexity

Following the same idea of local computation of δh, we want to find a small
subset of variables sufficient to compute the incremental change of complexity
due to the addition of links L to the current DMN. We show below that the crux
is just such a subset.

The following proposition says that a terminal cluster unchanged by the
addition of L is irrelevant to the computation of the incremental complexity.

Proposition 13 Let G be the structure of a DMN M over V and G′ be the
structure of another DMN M ′ that is a chordal supergraph of G induced by a
set L of links. Let N and N ′ be the total number of unconstrained parameters
needed to specify P (V ) for M and P ′(V ) for M ′, respectively. Let Q be a cluster
shared by F and F ′, and is terminal in F ′. Let S be the separator of Q in F ′.
Then δn = N ′ − N can be computed using reduced DMNs where variables in
V \ (Q \ S) are removed.

The following theorem shows that the crux is sufficient for computing the
incremental complexity.

Theorem 14 Let G be the structure of a DMN M over V and G′ be the structure
of another DMN M ′ that is a chordal supergraph of G induced by a set L of links.
Let N and N ′ be the total number of unconstrained parameters needed to specify
P (V ) for M and P ′(V ) for M ′, respectively. Then the crux R induced by G and
L is a sufficient subset of V needed to compute δn = N ′ − N .

Theorem 14 suggests the following method to obtain the incremental change
to the DMN complexity by local computation: First compute the crux R based
on Definition 2. Then compute the subgraphs of G and G′ spanned by R. Con-
vert the subgraphs into junction forest representations and compute δn using
Corollary 12.

8 Conclusion

We have shown that crux forms a subset of variables sufficient to compute the
incremental change of both goodness-of-fit and complexity of a DMN during
search of alternative dependence structures. The overall incremental improve-
ment due to adding links L is δΓ = δh − α δn, computed using the crux. Search
can terminate when no alternative structures provide positive δΓ . The compu-
tation is much more efficient than direct evaluation as the crux is small and
computation is local. There is no loss of accuracy due to the local computation.
The method is currently being implemented in WEBWEAVR-III toolkit.
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Abstract. Help systems offer a variety of services ranging from providing references
to online documents to providing task-specific on-the-job training. One of the per-
vasive characteristics of any help system is the conception of a help-context. De-
pending on the type of service being offered, help systems may require different
help-contexts. The context captures knowledge about the person who provides help,
the person who consumes help, the help material, and the tool that delivers the mate-
rial. The knowledge about the helper and the helpee can be stored in user models. In
this paper we discuss how help-contexts are created in the Helper’s Assistant and
how user models enhance the quality of help-contexts and the quality of help being
delivered.

1. Contexts in Help Systems

Computer-based tools often necessitate different degrees of adaptation to users with
varying amounts of computer expertise in task-domains of different complexities,
resulting in a variety of user impasses. This requires software tools to place increasing
emphasis on help systems to handle such impasses. Help systems range from sophisti-
cated graphical interfaces that guide the users, to proactive systems that can intervene
in the user-software dialogue. They can be passive or active, provided with canned
solutions or knowledge-based inferences, generic or task specific, collaborative, or
autonomous. They can be centric or distributed in terms of help components.

Help systems have been extensively investigated since the early 80s [4]. Most con-
temporary software tools have generic help facilities including metaphoric help (user-
friendly interfaces) and online help (www manuals). OFFICE [9] is a help system that
represents the authority and responsibility structure of the office workers and the pro-
files of the workers in specific roles within the organization. EUROHELP [10] has an
extensive model that represents users’ learning and forgetting. The model is used to
estimate knowledge strength of the user on a topic, to verify didactic goals related to
the topic being learned, and to identify prerequisite knowledge of the user.

There is a compelling trend to try to improve the quality of help by increasing the
bandwidth of information available to the help system. There are different dimensions
to increasing the bandwidth of help information. The bandwidth can be increased with
additional help material to augment the information about the subject/topic/domain of
the help request. The bandwidth can be enhanced with help components/tools that can
deliver help in a diverse manner or with knowledge of the helper (who provides help)
and helpee (who consumes help) to personalize the delivery of help. The bandwidth
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can be supplemented with pedagogical principles that can guide the process of help
delivery. The system can bring in appropriate/additional helpers to establish a realistic
collaborative help scenario to expand bandwidth even further.

A help system can have a combination of these dimensions that extend the help
bandwidth. We call this a help-context. A help context is a frame of reference for help
– a collection of knowledge that surrounds the help situation in order to support the
help interaction. Every help system operate based on some help context. Establishing a
suitable context is a primary problem in any help system. Success of peer help among
friends and colleagues is due to the establishment of personal, shared contexts. In most
cases, such contexts are established in an opportunistic fashion and the quality of help
depends on the capability of the individual delivering help.

Some of the notable systems that explicitly establish a range of help-contexts in-
clude Microsoft's Intellisenseä  technology [8] and I-Help [3]. Both systems allow the
depth of the help-contexts to be tuned to different levels depending on different re-
quirements. Microsoft’s Office Assistant does not possess an explicit model of the
user. However, it helps users to discover the full functionality of Office Products by
tracking users' recent actions, anticipating users' needs, and providing suggestions
about how to complete tasks more easily and efficiently.  The inadequacy of the
Intellisense™ technology derives primarily from the lack of user-specific contextual
information, where the captured information about the user is neither used extensively
nor kept over time. I-Help is an agent-oriented matchmaker tool that identifies suitable
human helpers. I-Help establishes coherent user-groups based on user preferences.
What the I-Help system lacks is personalized context-specific support for the helper.

Personalization is one of the essential dimensions of a help-context. Human help is
inherently personalized and is superior to machine help since relevant context is es-
tablished between the helper and the helpee. This is true because human helpers can
understand subtle contextual cues better than any help system.  In mimicking such
humane behaviour, help systems attempt to customize the contextual assistance in tune
with the personal requirements. A help-context can be customized around the help
being requested. In a programming environment, a preliminary personalized help-
context can be built based on recent interactions of the helpee with the Integrated
Development Environment (or the recent command line executions of the helpee).
Shared collaborative applications (whiteboards) and shared input/output devices can
provide personal but non-portable contexts. We claim that instead of embedding the
context in the interface itself, it is possible to capture the context as a software entity.
Such a portable context can be used to personalize the interface at runtime. For exam-
ple, if the help-context is known to the helper, he or she can create a better explana-
tion, using tools and material relevant to the help context.

Personalization can focus on the helper, or the helpee, or a partnership between the
two. In this paper, we will restrict our focus to developing a personalized context for
the helper. There are many aspects to personalization in help systems. The interface
presenting the help-context to the helper can be personalized; the suite of help tools
that are preferred by the helper can be chosen; favourite tutorial strategies of the
helper can be preferred. In addition, the helper can choose the helpees who he/she
would like to help, when he/she would like to deliver help, and how he/she would like
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to portray himself/herself over the network. Personalized help-contexts can choose
between proactive versus reactive help. It is quite possible that in most cases reactive
help is sufficient to satisfy help requests. That is, help is offered only when requested.
On those occasions, the impact and utility of the help-context can be minimal. Input
for reactive help comes primarily from the recent interaction of the helpee with the
system. However, there are situations when proactive help can be found very useful.
The proactive mode of help can also allow a helpee to join in a help interaction going
on between a helper and another helpee. Such a situation is possible when the helpee
notices that his/her help request is addressed in a help interaction and would like to
join in, contribute, and expand the scope of the interaction. Input for proactive help
comes from observations of past and recent interaction of the helpee with the system.

User modelling is the key to personalization in help systems. A model is an observ-
able representation of attributes of the entity being modelled. A user model acquires
knowledge about users, relative to the learning goals. Normally, acquisition is carried
out dynamically as the user engages in interactions with the system. User models can
be used in help systems in a variety of contexts, including adaptation of user inter-
faces, selection of instructional exercises, support for collaboration, customization of
information content, and prediction of users’ future behaviour. However, it is not a
trivial task to obtain user model information from observed user actions. Further,
making help inferences from the information contained in a user model is a complex
task. Beyond that, it is even more complicated to identify and deliver appropriate help-
actions based on the inferred information. Nevertheless, a pragmatic, generic, and
sophisticated user model has been designed, developed, and deployed in a help system
called “Helper’s Assistant”, which generates a comprehensive help-context to person-
alize help delivery.

2. Personalized Contexts in Helper’s Assistant

Helper’s Assistant [6] is a framework as well as a tool that assists a helper to better
understand the help request, the background knowledge about the helpee, potentially
successful tutorial strategies, preferred help tools, and other help delivery constraints.
It presents the help request in its raw form; provides references to similar requests
made by other helpees; provides help material and help tools that match the help re-
quest; advises the helper about appropriate tutorial strategies; presents a glimpse of the
subject knowledge, help history, and preferences of the helpee. Helper’s Assistant also
attempts to incorporate input from the helpee to supplement the help-context.

The current prototype implementation of Helper’s Assistant is a support system for
helpers who are engaged in providing Java programming help to novice learners over
a computer network. A help-request originating from a helpee initiates a help session
between a helper and a helpee. At this point, the helper can choose to invoke and use
Helper’s Assistant. The helper can interact with Helper’s Assistant before or during
the help session. Using the models of the helper and the helpee, Helper’s Assistant
creates a help-context that provides task-oriented, personalized support for the helper.
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Fig. 1 outlines the flow of information from various sources to the help-context. The
resources are completely independent of each other and they interact with the help-
context object using a CORBA-based client-server platform. For example, the helpee
can initiate a help request from any application as long as that application or the helper
(using any application) sends in a message to the “Help Request Server” to invoke
Helper’s Assistant.

Fig. 1. An outline of flow of help-context information

The help-context acts as a channel between the system and the resources. Internally, it
is represented as an object. It contains simple data, inferred data, and methods to re-
trieve and update values. It uses three types of knowledge-based inferences: rule-
based, Bayesian, and constraint-based resolution. Section 3 details from where the
help-context data is obtained, how it is inferred, and in what form it is presented to the
helper. An abridged list of the help-context slots is presented in Table 1.

Table 1. Slots of help-context

Help context categories
1 Help request material, related material, help request statistics, similar sessions
2 Help concept, related concepts, concept statistics, instantiated concept hierarchy
3 Helpee keywords, related keywords
4 Associated task, task models, task statistics for class, task statistics for helpee
5 Helpee preferences: when, how long, type, mode, form, interface, pedagogy…
6 System preferences: when, how long, type, mode, form, interface, pedagogy…
7 Helper preferences: when, how long, type, mode, form, interface, pedagogy…
8 Help plan library, help principle, instantiated help plan
9 Tool library, models of tools

The first three slots contain a number of key-value pairs, where each slot requires
some input from the helpee that is enhanced by the system and/or the helper. For the
first slot, the helpee provides the help request question/material (example, Java code)
and the system attempts to extract similar question/material, related statistics, and the
helpee’s help request statistics.

The second slot requires the helpee to select one or more related concepts from a
hierarchy. The system enhances the selection with a set of concepts attributed to par-

Help-

Helper/helpee models

Help request

Task & Domain models

Help plan library

Help tools library

helper

helpee
?

Helper’s Assistant
Interface
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ent, child, adjacent, related, and prerequisite relations. The system then instantiates the
values for the resultant set of concepts (reflecting the subject knowledge of the hel-
pee). The third slot accepts a set of keywords and the system enhances with a set of
related keywords.

The next four slots are filled by the system in cooperation with the helper. The
fourth slot corresponds to the curriculum-related information. Associated tasks are
tasks that the helpee is expected to perform within the scope of the curriculum. Task
models are predetermined references to procedural knowledge associated with a task.
For example, different algorithms form the task models for a programming problem.
Performance statistics of the helpee and the related group (example, a class of stu-
dents) can also be extracted for each task as part of the help-context. The fifth, sixth,
and seventh slots of the help-context capture preferential data for the helper, the hel-
pee, and the system. Preferential data includes the type of help responses (short an-
swer, analogy,..), the mode of help-delivery (offline, online, just-in-time, every 10
minutes, session transferable, interruptible, joinable,..) , the form of help communica-
tion (manual, automated, collaborative, anonymous,..), interface preferences (tab-
options, look-and-feel,..), tool preferences (web forum, chat,..), pedagogical prefer-
ences (min-to-max material, analogy, articulation,..), interaction partner preferences
(gender, ethnicity, group,..), when (just-in-time, within 15 minutes,..), how long (5
minutes, until-done,..), willingness (helpee-category, curriculum-category,..), conflicts
(resolution priority, resolution rules, …), etc.

The eighth slot corresponds to the chosen help plan derived by the system. The pro-
cess of instantiation of a help plan based on the personal preferences of the helper is
described elsewhere [5,7]. The final slot contains information related to the external
application tools that Helper’s Assistant can invoke. Presently, the models of these
tools only contain usage history with respect to individual users. However, it is possi-
ble to conceive a detailed application model for each tool, which will give a compre-
hensive usage history for the users of these tools.

Fig. 1 shows a screen shot of the interface of Helper’s Assistant. The interface is
determined based on the helper’s preferences stored in the helper’s user model, sym-
bolized in terms of the tabs that are shown at the top of the figure. The first tab brings
in the help request, references to other help sessions on similar topic(s), and statistics
related to similar help requests. The second tab presents a customized list of WWW
links and a search engine. The third tab summarizes the helpee’s curriculum related
efforts and relevant user model information. The fourth tab allows the helper to locally
compile a Java program, inspect the compiled output, and look at the bug statistics of
the helpee from time to time. The fifth tab presents the help plan.

Each tab presents a piece of the help-context information. As mentioned earlier, a
help-context is an extended representation of a help request. It is a container for all the
relevant references associated with the help request. It acts as the object of reference
during help sessions. The help-context has many slots of key-values structure. The
values for help-context are obtained from a variety of resources.

Once created, the help-context generates the interface for Helper’s Assistant. As
depicted in Fig. 2, the interface contains seven components: “help request”, “WWW
search”, “Concepts UM info”, “Tasks”, “Compile”, “Help plan”, and “Help tools”.
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Fig. 2. A screen shot of Helper’s Assistant

The “help request” option retrieves the question posed by the helpee, and creates
references to similar questions posed earlier, related help material, and other ongoing
help sessions that might be of interest. The question is retrieved from the application
the helpee was using when he or she requested help. Similar questions, related help
material, and similar ongoing sessions are obtained using a keyword-based search.

The “WWW search” option presents a domain-specific, predetermined WWW
search space, which is deployed using JavaHelp™ (as Java programming is our do-
main). The “Concepts UM info” option presents conceptual knowledge of the helpee
in terms of “Abstract Syntax Tree” elements of the Java programming language. The
conceptual knowledge is represented in the interval of [0 – 1] and the values of these
concepts are retrieved from the helpee’s user model. In addition, the preferences of the
helpee, the helper, and resolved preferences in case of conflicts are also presented to
the helpee.

The “Tasks” option presents the helpee’s progress in a course, including the start
date of the curriculum element (e.g., start date of assignment 1), the end date, the
associated concepts, whether completed, and the score. This information is obtained
from domain models. In addition, the helper is given references to specific, precon-
ceived solutions for individual curriculum elements (e.g., solutions for an assignment
using different algorithms), which is obtained from the task models.
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The “Compile” option allows the helper to view the helpee’s code and compile it
locally. It also presents statistical information about the helpee’s earlier compilation
efforts. For example, it can present a list of “bugs” encountered by the helpee in a
particular assignment, and their frequency, retrieved from the helpee’s user model.

The “Help plan” option utilises information from the help plan library and the help
tools library. The help plan library consists of help plans corresponding to fourteen
common help principles. Using the information from the helper model, the helpee
model, the help request, and the help tool library, the system selects a help principle
and the corresponding help plan from the help plan library. Fig. 2 presents the interface
generated by the help-context, which is the ultimate outcome of the instantiation of a
help plan.

The help plan is a sequence of procedural steps. Each procedural step embodies the
required help material, the preferred help delivery tool, and the pedagogical strategy
behind the step. The helper can invoke a step simply by double-clicking the step (ex-
ample, Rephrase:diagnosis). The bottom-most pane provides a suite of relevant tools
and material selected based on the personal preferences of the helper, independent of
any pedagogical grounding.

The quantity of information that needs to be compiled to address a single curricu-
lum element (like an assignment) is considerable. However, using Helper’s Assistant’s
framework, the built-in routines, the ability to maintain different help material inde-
pendent of each other, and the custom interface, one can develop a practical help sys-
tem without great difficulty.

The next section highlights how the help-context obtains the necessary information
to personalize help interaction.

3. Creation of Help-Context in Helper’s Assistant

The majority of help-context information is about the personal aspects of the helper
and the helpee, which are stored in the respective user models. Some of the slots in the
help-context contain simple data (“user-id”, “willing-to-help (yes/no), etc). Interest-
ingly, some of the slots contain complex information that is used in knowledge-based
inferences. Considering this requirement, the help-context has been implemented as an
object that possesses several inference methods.

One of the knowledge-based techniques used in Helper’s Assistant is its ability to
use human help as part of the machine help, what we call the human-in-the-loop ap-
proach. In order to make this integration successful it is imperative that the system can
present personalized information to the helper. One simple type of personalization is
the system’s ability to consider the gender preferences of the helper. For example, the
helper and the helpee can store their gender (or many other) preferences as production
rules, in their respective user models. Helper’s Assistant keeps track of the success
rate of same-gender and cross-gender interactions of the helper and the helpee. Based
on these values, Helper’s Assistant executes the production rules to obtain a measure
of relevance for the helper-helpee pair. Java Expert System Shell is used for rule-
based reasoning [2]. An example rule is given below:
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if helper-same-gender-interaction is worse or bad  AND
   helper-cross-gender-interaction is okay or good AND
   helper-gender-preference is female AND
   helpee-gender is female AND
   helpee-cross-gender-interaction is okay or good
then helper-helpee-gender-pairing is acceptable

At this point in time the helper has already been chosen. However, the system evalu-
ates the compatibility between the helper and the helpee using these rules and updates
the gender-related statistics with the outcome of the help interaction (success or fail-
ure). This statistic can be used by the matchmaker application (or server).

Helper’s Assistant uses Bayesian reasoning to update conceptual knowledge of the
users. For example, the conceptual knowledge of the Java programming language is
stored in an abstract syntax tree, where each node refers to a syntactical component of
the language. The structure of the abstract syntax tree is replicated in the Bayes net-
work as a causal structure. Each concept node in the network is initialized with a de-
fault value. The competence of a user corresponding to a concept node is represented
in the range of [0 – 1]. The evidence observed from the external applications, related
to the appreciation or the deprecation of the user’s knowledge of the concept nodes are
fed into the network. The evidential values are updated within each node and then
propagated upwards towards the root of the syntax tree using the Bayesian inference
methods ingrained in JavaBayes [1].

Helper’s Assistant uses constraint-based reasoning to traverse a network of help-
actions, which results in an instantiated help plan [5,7]. Each help-action node in the
network represents a unique, byte-sized, help procedure. There is a start node and an
end node in the network. There can be many paths starting from the start node to the
end node through a number of help-action nodes. Each arc connecting two help-action
nodes is associated with a number of "pedagogical constraints". Pedagogical con-
straint ensure prerequisite relations between two consecutive nodes; limit the number
of execution of cyclic nodes; ensure helper/helpee preferences are considered; guar-
antee the availability of help resources; and enforce time limits. The particular tra-
versal of the help-plan-network results in a specific help-plan. The traversal however
is dependent on the pedagogical constraints. That is, the traversal is stopped when all
the constraints associated with a particular node (called “failed node”) are not satis-
fied. The path traversed up to the failed node yields the help plan.

The help plan network contains many paths from the start node to the end node.
The system explores all possible paths (depth-first search) to identify a set of candi-
date paths. Many candidate help-plans are arrived at for a single help-context corre-
sponding to the set of candidate paths. The candidate help-plans are presented to the
helper who can select an appropriate one for execution. For example, in Fig. 2, the
system presents a candidate set of eight help plans (min-to-max help, helpee articulate,
Netmeeting, WWW, CPR, Dogmatix, min-to-max material, and max-to-min material).
The helper can select any help plan from this list as a contextual reference for the help
session. By double-clicking on any of the help plans, the helper can expand the corre-
sponding help-actions.
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In many ways the user model of helper and helpee informs the help-context in
Helper’s Assistant. Both user models and help-context are objects. They have similar
input resources, similar inference procedures, and share a number of common vari-
ables. However, there are some differences in terms of their scope and functionality.
The help-context is relevant only for the duration of the current help request, while the
user models deal with the accumulation of user-related information over a much
longer period of time. User model gets input from a variety of external applications,
while help-context gets input primarily from the task models, the domain models, the
helpee, and the user models. For a single variable, the user model provides a range of
update methods that the user can choose from. The help-context provides only one
update method that sends the value of a variable to the user model. The key aspect is
that both the help-context and the user model feed on each other.

4. Conclusion

We conducted a usability study to informally evaluate how Helper’s Assistant will be
received among student helpers, both novice peers and experts, in a university envi-
ronment. The design of the study and the results are described elsewhere [5,6]. In this
paper, we report the results pertaining to differences in novice-peer and expert per-
ception and usage of Helper’s Assistant, particularly as it pertains to the utility and
accuracy of the help-context. The data is obtained primarily from a questionnaire that
helpers filled in after they completed their help sessions with and without using
Helper’s Assistant. Usage statistics of the system were obtained automatically.

Experts found Helper’s Assistant to be useful 56% (18 out of 32) of the times while
novice peers found Helper’s Assistant to be useful 72% (23 out of 32) of the times.
We concluded that novice peer-helpers found the system to be more often useful than
experts did.

Experts were successful in answering a question with Helper’s Assistant 88% (22
out of 25) of the times and they were successful in answering a question without
Helper’s Assistant 85% (17 out of 20) of the times. On the other hand, 87% (20 out of
23) of the times novice peers were successful in answering a question with Helper’s
Assistant and 50% (12 out of 24) of the times novice peers were successful in an-
swering a question without Helper’s Assistant. Novice peers found Helper’s Assistant
to be more useful in successfully answering a question than experts did.

By observing the number of mouse-clicks it is determined that novice peers used
Helper’s Assistant (277 total clicks) much more than experts did (78 total clicks).
Obviously, novice peers sought more support from the system than the experts did.

Based on a question concerning the cost/benefit analysis we find that 31% of the
times experts felt that the cost (extra overhead) of using Helper’s Assistant is more
than the benefits of using Helper’s Assistant. On the other hand, 50% of the times peer
helpers found Helper’s Assistant not worth the extra effort it caused them. That is, half
the novice peer-helpers felt that Helper’s Assistant is not worth the trouble of learning
about the system. This result indicates that there is an opportunity to improve the sys-
tem to make it more comfortable for the novice peer helpers.
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In general, these results suggest that the novice peer helpers found personalized
Helper’s Assistant to be more useful than the expert helpers. Obviously, novice peer
helpers need more personalized support to make the help sessions more conducive to
their individual ability, style, and time frame.

One of the goals of the help system community is to find and deploy techniques to
tutor, train, support, and help users in various domains in a personalized manner.
Helper’s Assistant presents one such framework that can provide personalized, cus-
tomized, and possibly just-in-time help to the helper. The framework is quite generic
and can be used in a variety of situations. User models and help-contexts are the core
personalization resources of Helper’s Assistant. Information derived from the user
models is used to personalize the help-context and hence personalize the help interac-
tion. It is our conviction that personalized help-context is central to any successful
help system.
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Abstract. QA-LaSIE was the heart of the University of Sheffield en-
try to the Question Answering track of TREC-9. By relaxing some of
the strongest linguistic constraints, we achieved a very significant per-
formance improvement over our TREC-8 system on both the TREC-8
and TREC-9 tasks. Whereas most systems returned answers that were
always close to the maximum allowable length, our system was one of
the only entries that tried to return an “exact answer” to a question.

1 Introduction

This paper describes a system to discover answers to questions posed in natural
language against large text collections. The system was designed to participate
in the Question Answering (QA) Track of the Text Retrieval Conferences (see
http://trec.nist.gov) and therefore the definitions of “question” and “an-
swer” that we adopt for this paper are those used in the TREC QA track (see
section 2 below). While the system is a research prototype, it is clear that sys-
tems of this sort hold great potential as tools to enhance access to information
in large text collections (e.g. the Web). Unlike a search engine, which returns a
list of documents ranked by presumed relevance to a user query, leaving the user
to read the associated documents to fulfil his information need, a question an-
swering system aims to return the precise answer to a question leaving the user
no further searching (though of course a link to the source document enables the
user to confirm the answer).

The task of question answering should be of interest to the AI community for
the simple reason that some form of Natural Language Processing must be used.
There was not a single system entered in the TREC-9 QA Track that did not
use some form of linguistic knowledge – no group took a purely statistical word
counting approach.1 Thus, unlike other tasks in Information Retrieval, question
answering is one in which some form of NLP seems unavoidable. Nevertheless,
1 The least NLP to be found was in one of the IBM groups’ submissions. But even

this system used the WordNet hypernym hierarchy to gain an edge over a simple
bag-of-words representation. Most systems used considerably more NLP.

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 172–182, 2001.
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our own experience over two years of participation shows that an overly strict or
formalistic approach may not succeed as well as one based on a mixture of formal
NLP and ad-hoc heuristics. This year we achieved much better performance by
relaxing some of the strict constraints we had employed for TREC-8.

The essence of our approach is to pass the question to an information re-
trieval (IR) system which uses it as a query to do passage retrieval against the
text collection. The top ranked passages from the IR system are then passed to
a modified information extraction (IE) system. Partial syntactic and semantic
analysis of these passages, along with the question, is carried out to identify the
“sought entity” from the question and to score potential matches for this sought
entity in each of the retrieved passages. The five highest scoring matches become
the system’s response. It is our hypothesis that NLP techniques can contribute
positively to QA capability.

2 The TREC Question Answering Track

The TREC-9 QA Track task was to return a ranked list of up to 5 answers to
each of 693 previously unseen questions. The answers had to be passages from
texts found in a (provided) 4GB newswire text collection. In TREC-9 there were
two subtasks: 50-byte and 250-byte answers (maximum). The score assigned to
each question was the reciprocal of the rank at which the first correct answer
was found, or 0 if no answer was correct. So a system got 1 point for a correct
answer at rank 1, 1/2 for rank 2, etc. The final score assigned to the system was
the Mean Reciprocal Rank over the entire question set. For more details see the
QA track guidelines document [5].

3 System Description

3.1 Overview

The key features of our system setup, as it processes a single question, are shown
in Figure 1. First, the (indexed) TREC document collection is passed to an IR
system which treats the question as a query and returns top ranked passages
from the collection. As the IR system we use the Okapi system [6]2 to retrieve
passages between 1 and 3 paragraphs in length – a configuration arrived at
experimentally (details in [7]). Following the passage retrieval step, the top 20
ranked passages are run through a filter to remove certain formatting features
which cause problems for downstream components. Finally, the question itself
and the filtered top ranked passages are processed by a modified version of the
LaSIE information extraction system [3], which we refer to below as QA-LaSIE.
This yields a set of top ranked answers which are the system’s overall output.

The reasoning behind this choice of architecture is straightforward. The IE
system can perform detailed linguistic analysis, but is quite slow and cannot
process the entire TREC collection for each query, or even realistically pre-
process it in advance to allow for reasonable question answering performance
2 Software available at: http://dotty.is.city.ac.uk/okapi-pack/ .
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Fig. 1. System Setup for the Q & A Task

during the test run. IR systems on the other hand are designed to process huge
amounts of data. By using an IR system as a filter to an IE system we hope to
benefit from the respective strengths of each.

3.2 LaSIE

The system used to perform detailed question and passage analysis is largely
unchanged in architecture from the LaSIE system entered in the last Message
Understanding Conference (MUC-7) [3]. The system is essentially a pipeline
consisting of the following modules, each of which processes the entire text3
before the next is invoked.

Tokenizer. Identifies token boundaries and text section boundaries (text
header, text body and any sections to be excluded from processing).

Gazetteer Lookup. Identifies single and multi-word matches against multiple
domain specific full name (locations, organisations, etc.) and keyword (com-
pany designators, person first names, etc.) lists, and tags matching phrases
with appropriate name categories.

Sentence Splitter. Identifies sentence boundaries in the text body.
Brill Tagger. Assigns one of the 48 Penn TreeBank part-of-speech tags to each

token in the text [1].
Tagged Morph. Simple morphological analysis to identify the root form and

inflectional suffix for tokens which have been tagged as noun or verb.
Parser. Performs two pass bottom-up chart parsing, pass one with a special

named entity grammar, and pass two with a general phrasal grammar. A
“best parse” is then selected (which may be only a partial parse) and a
predicate-argument representation, or quasi-logical form (QLF), of each sen-
tence is constructed compositionally.

Name Matcher. Matches variants of named entities across the text.
Discourse Interpreter. Adds the QLF representation to a semantic net, which

encodes background world and domain knowledge as a hierarchy of concepts.
Additional information inferred from the input using this background knowl-
edge is added to the model, and coreference resolution is attempted between
instances mentioned in the text, producing an updated discourse model.

3 In the current implementation a “text” is either a single question or a candidate
answer passage.
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3.3 QA-LaSIE

The QA-LaSIE system takes a question and a set of passages delivered by the
IR system and returns a ranked list of proposed answers for the question. The
system is composed of the eight modules described in the preceding section plus
one new module. Four key adaptations were made to move from the base IE
system to a system capable of carrying out the QA task:

1. a specialised grammar was added to the parser to analyse questions;
2. the discourse interpreter was modified to allow the QLF representation of

each question to be matched against the discourse model of a candidate
answer passage;

3. the discourse interpreter was modifed to include an answer identification
procedure which scores all discourse entities in each candidate passage as
potential answers;

4. a TREC Question Answer module was added to examine the discourse en-
tity scores across all passages, determine the top 5, and then output the
appropriate answer text.

Parsing: Syntactic and Semantic Interpretation. In the LaSIE approach,
both candidate answer passages and questions are parsed using a unification-
based feature structure grammar. The parser processes one sentence at a time
and along with the original words of the sentence also receives as input a part-
of-speech tag for each word, morphological information for each noun and verb
(word root plus affix), and zero or more phrases tagged as named entities. As
output the parser produces a representation of the sentence in a “quasi-logical
form” – a predicate-argument representation that stands somewhere between the
surface form of the sentence and a fully interpreted semantic representation in
a standard logical language. In particular the QLF representation defers issues
of quantifier scoping and of word sense disambiguation.

To take a simple example, the sentence fragment Morris testified that he
released the worm . . . is parsed and transduced to the representation

person(e1),name(e1,’Morris’),gender(e1,masc),testify(e2),
time(e2,past),aspect(e2,simple),voice(e2,active),lsubj(e2,e1),
release(e3),time(e3,past),aspect(e3,simple),voice(e3,active),
pronoun(e4,he),lsubj(e3,e4),worm(e5),number(e5,sing),
det(e5,the),lobj(e3,e5),proposition(e6),main_event(e6,e3),
lobj(e2,e6)

The name information is derived from the Gazetteer lookup stage (where Morris
is recorded as a male first name), the tense information from the morphologi-
cal analysis stage, and the grammatical role information from annotations on
context-free rules in the grammar. In this case these rules encode that in En-
glish sentences which consist of a noun phrase followed by a verb phrase, which
in turn consists of a verb in the active voice and a sentential complement, the
noun phrase prior to the verb is the subject and the sentence following it is the
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object. For common nouns and verbs, the lexical root of the word becomes a
predicate in the QLF language.

Both noun phrase heads and verb group heads are given unique discourse
entity references of the form en. This allows modification relations (e.g. of prepo-
sitional phrases) or grammatical role information (e.g. subject and object rela-
tions) to be captured via binary predicates holding of these entities. In cases
where parsing fails to capture all this information (e.g. when only simple noun
phrase, verb group, prepositional phrase or relative clause chunks are found and
not a spanning parse for the sentence) then partial QLF information can be
returned, making the system robust in the face of grammatical incompleteness.

Each sentence in a candidate answer passage is analysed in this fashion. So is
the question, using a special question grammar. This grammar produces a QLF
for the question in much the same style as above. For example, a question such
as Who released the internet worm? would be analysed as:

qvar(e1),qattr(e1,name),person(e1),release(e2),time(e2,past),
aspect(e2,simple),voice(e2,active),lsubj(e2,e1),
worm(e3), number(e3,sing),det(e3,the),lobj(e2,e3),
name(e4,’Internet’),qual(e3,e4)

Note the use of the special predicate, qvar (question variable), to indicate
the “sought entity” requested by the question. In this case the qvar can also be
typed because who tells us the entity of concern is a person, and we presume
(by encoding this in the transduction rules) that the attribute we are seeking
here is a name (and not, e.g., a definite description such as a guy at MIT). The
fact that the system should return a name is encoded in the qattr predicate. In
other cases where the interrogative pronoun is more generic (e.g. what) the type
of the qvar and the attribute sought of it may not be so readily determinable.

Discourse Interpretation of Candidate Answer Passages. Once a pas-
sage has been parsed and each sentence has been assigned a QLF representation,
the discourse interpreter integrates the passages into a discourse model - a spe-
cialisation of a semantic net which supplies the system’s background domain
knowledge. For IE applications, this domain-specific background knowledge as-
sists in extraction tasks by allowing template slot values to be inferred from it
together with information supplied in the text being analyzed. However, for the
TREC QA task there is no specific domain, and so this role of the semantic net
is not relevant (though a very basic “generic” world model is employed).

The real function of the semantic net in the QA task is to provide a framework
for integrating information from multiple sentences in the input. As the QLF
representation of each sentence is received by the discourse interpreter, each
entity is added as an instance node in the semantic net associated with its type
node (the single unary predicate in which it occurs) – e.g. given worm(e5),
e5 is linked to the worm node in the net, if it already exists, and to a new,
dynamically-created node labelled worm if not. Added to each such entity node
is an attribute-value structure, or property list, containing all the attribute and
relational information for this entity (all binary predicates in which it occurs).
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In addition to adding a sentence’s QLF to the semantic net in this fashion,
one further node is added representing the sentence itself. This sentence entity
has a sequence number indicating the sentence’s position in the passage, and
also has an attribute recording the entity numbers of every entity occurring in
the passage. Thus, the discourse model aims to model not only the content of
the discourse, but simple aspects of the discourse structure itself.

After each sentence has been added to the discourse model, the discourse
interpreter begins its main task – to determine coreference relations between
entities in the current sentence and entities already added to the model from
previous sentences in the input. There is not space to detail this algorithm here
(see [2]), but in essence it relies upon factors including the semantic type com-
patibility, attribute compatibility, and textual proximity of potential coreferents.
Once a coreference has been established between two entities, the two are merged
by replacing all references to the two entity numbers by references to just one
of them. However, the surface realisations which initially served as triggers for
the creation of each distinct entity node are retained as attributes of the merged
entity, and can be used later, e.g. to generate a text string as an answer.

Answer Identification. After the discourse model has been constructed for a
candidate answer passage, the QLF of the question is added to this model and
treated as sentence 0. The coreference procedure is run and as many coreferences
as possible are established between entities in the question and those in the
passage4.

In the TREC-8 version of QA-LaSIE [4] this procedure was the primary
question answering mechanism: if the qvar was resolved with an entity in the
candidate answer passage then this entity became the answer; if not, then no
answer was proposed. This approach had several major drawbacks. First, it
permitted only one answer per question, whereas the QA track allows up to
five answers to be proposed. Second, it was very fragile, as coreference tends to
be difficult to establish.

Given these weaknesses, the TREC-9 system follows a significantly different
approach. Instead of attempting to directly corefer the qvar with an entity in
the candidate answer passage, entities in the passage are scored in a way which
attempts to value their likelihood as answers. The best scores are then used to
select the answers to be returned from the passage.

The discourse model is transversed twice, sentence by sentence.

1. Sentence Scoring On the first pass, the sentences are given an integer score.
The entities in the question are interpreted as “constraints” and each sen-
tence in the answer passage gets one point for each constraint it contains.
This rewards sentences for containing entities that have been detected as
coreferring with entities in the question. Typically these will be sentences

4 The standard coreference procedure uses a distance metric to prefer closer to more
distant potential coreferences. Clearly this is irrelevant for questions which are not
part of the original candidate answer passage. Hence we switch off the distance-
preference heuristic for coreference in this case.
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which contain named entities mentioned in the question, or sentences which
contain definite noun phrases or pronouns which have already been resolved
(as part of discourse interpretation of the passage). Sentences also get an
extra point if they contain an event entity of the same type as the event
derived from the matrix verb of the question (unless that verb is to be).

2. Entity Scoring On the second pass, the system looks in each sentence for the
best possible answer entity. To be considered, an entity must be an object
(not an event), and must not be one of the constraints from the previous step.
If the qvar has a qattr, then the entity must also have the specified attribute
to be considered a possible answer. The entities in a given sentence are
compared to the qvar and scored for semantic similarity, property similarity,
and for object and event relations.
Semantic and property similarity scores are determined as for generic coref-
erencing. The semantic similarity score indicates how closely semantically
related two things are (on a scale of 0 to 1). The semantic similarity is re-
lated to the inverse of the length of the path that links the two semantic
types in the ontology. If the qvar and an entity have the same type (e.g.
person), then that entity will receive a semantic similarity of 1. If the two
semantic types are on different branches of the hierarchy, the score is 0.
The property similarity score is also between 0 and 1 and is a measure of
how many properties the two instances share in common and how similar
the properties are.
The object relation and event relation scores were motivated by failure anal-
ysis on the original system and were tuned through test runs. The object
relation score adds 0.25 to an entity’s score if it is related to a constraint
within the sentence by apposition, a qualifying relationship, or with the
prepositions of or in. So if the question was Who was the leader of the team-
sters?, and a sentence contained the sequence . . . Jimmy Hoffa, Leader of
the Teamsters, . . . then the entity corresponding to Jimmy Hoffa would get
the object relation credit for being apposed to Leader of the Teamsters.
The event relations score adds 0.5 to an entity’s score if:
a) there is an event entity in the QLF of the question which is related to

the qvar by a lsubj or lobj relation and is not a be event (i.e. derived
from a copula construction), and

b) the entity being scored stands in the same relation (lobj or lsubj) to
an event entity of the same type as the qvar does. So if the question
was, What was smoked by Sherlock Holmes? and the answer sentence
was Sherlock Holmes smoked a pipe, then the entity a pipe would get the
event relations credit for being in the lobj relation to the verb to smoke.

This represents a significant weakening of the requirement in our TREC-8
system that the qvar had to match with an entity in the answer passage
which stood in the same relation to its main verb as the qvar did with the
main verb in the question, as well the main verbs and other complements
being compatible. Here a bonus is awarded if this the case; there it was
mandatory.
Finally, the entity score is normalized to bring it into the range [0,1]. This
is motivated by the idea that if two sentences have equal scores from step



QA-LaSIE: A Natural Language Question Answering System 179

1 above, the entity score should break the tie between the two, but should
not increase their scores to be higher than a sentence that had a better score
from step 1. Normalizing the score improved performance slightly in tests
on the TREC-8 questions.

3. The Total Score For every sentence, the “best” answer entity is chosen ac-
cording to the Entity Scoring described above. The sentence and entity scores
are then added together and normalized by dividing by the number of enti-
ties in the question plus 1. The sentence instance is annotated to include the
total score, the best entity (if one was found), and the “exact answer”. The
exact answer will be the name of the best entity if one was identified during
parsing. Otherwise this property is not asserted.

Answer Output. The answer output procedure gathers the total scores, as
described in the preceding section, from each sentence in each of the passages
analyzed by QA-LaSIE, sorts them into a single ranking, and outputs answers
from the overall five highest scoring sentences.

We submitted four runs to the TREC-9 evaluation – two in the 50-byte
category and two in the 250 category. These four runs are explained below:

shef50ea. This is the exact answer run. If a high scoring sentence was annotated
with a trec9 exact answer attribute then this is assumed to be the answer.
If there is no exact answer, then the code looks for a trec9 answer entity
and outputs the longest realization of that entity as the answer. If there
is no answer entity, which can happen occasionally, then a default string
is output. In all cases, the string is trimmed to 50 bytes if necessary, by
trimming characters from the left hand side.

shef50. For this run, the system looks for the first occurrence of the trec9 -
answer entity in the sentence and then outputs 50 bytes of the sentence
centered around that entity. The 50-bytes will never go outside of the answer
sentence (if the first occurrence is the first word, then the 50 bytes will be
the first 50 bytes of the sentence, and so on). If the sentence is shorter than
50 bytes, then the full sentence is output as the answer. If there is no answer
entity, the middle 50 bytes are output.

shef250. Same as shef50, but up to 250-bytes or the full sentence is output
(whichever is shorter).

shef250p. For this run, the answer for shef250 is computed, then the answer is
padded to 250 bytes if necessary by adding characters from the file to both
ends, going outside the confines of the sentence if necessary.

4 Results

4.1 Development Results (TREC-8)

Development results for the four run types described in the preceding section
are shown in Table 1. shef-trec8 refers to the official results obtained by our
TREC-8 system in TREC-8. okapi-baseline refers to a naive approach that
simply used Okapi passage retrieval with a maximum passage length of one
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Table 1. Results on TREC-8 Questions. Rank hypothetical where marked.

System Run Mean Reciprocal Rank Correct Answers Rank in Class
shef-trec8 50 .081 N/A 15/17
okapi-baseline 50 .157 N/A 14/17 (hyp)
shef50ea 50 .329 89/164 4/17 (hyp)
shef50 50 .368 98/164 3/17 (hyp)
shef-trec8 250 .111 N/A 22/24
okapi-baseline 250 .395 N/A 11/24 (hyp)
shef250 250 .490 127/164 4/24 (hyp)
shef250p 250 .506 130/164 4/24 (hyp)

paragraph and then trimmed this paragraph to 50 or 250 bytes. This method
led to Mean Reciprocal Rank scores of 0.157 for the 50 byte responses and .395
for the 250 byte responses. This totally naive approach would have placed 14th
of 17 entrants in the TREC-8 50-byte system ranking and joint 11th of 24 in the
250-byte system ranking. In both cases these results were considerably higher
than our own entries in TREC-8. Thus, we started with a sobering baseline to
contend with. However, following development of the new approach described
above in section 3.3 and numerous experiments with various parameter settings
we arrived at the best development results presented in Table 1.

4.2 Final Evaluation Results (TREC-9)

Mean reciprocal rank scores for the four Sheffield TREC-9 runs are shown in
Table 2, for both lenient and strict scorings.5 We have also included our system’s
ranking over all the systems entered and the mean score for all systems entered.
In all cases the performance of the Sheffield system is very close to the mean.
We have also used the Perl patterns supplied by NIST for the TREC-9 results
to score the submitted runs and an okapi-baseline system ourselves. These
results are reported in the Auto column.

5 Discussion

The TREC-9 results also reported on the mean byte length of answers for each
submitted run. Most participants gave as much text as was allowed, resulting in
mean byte lengths of more than 45 bytes in the 50 byte category for all but a
handful of systems. Our shef50ea run (the exact answer run) was one of the few
that had a lower mean answer length – less than 10 bytes in fact. While we do
not know yet what the mean byte length would have been for correct answers,
we can report that our system had the highest score of the four systems that
returned answers with an average length under 10 bytes.
5 In strict scoring, an otherwise correct answer was marked as wrong if there was no

support for it in the text from which it was extracted.
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Table 2. TREC-9 Results.

System Run Mean Reciprocal Rank % Correct Answers in Top 5 Rank in
Strict Lenient Auto Strict Lenient Auto Class

shef50ea 50 .159 .172 .171 23.6 25.7 25.8 28/35
shef50 50 .206 .217 .233 31.1 32.1 35.2 21/35
mean (of 35) 50 .220 .227 31.0 32.2
okapi-baseline 50 .111 21.9
shef250 250 .330 .343 .348 48.5 49.4 51.5 28/43
shef250p 250 .345 .357 .365 50.9 51.3 53.7 23/43
mean (of 43) 250 .351 .363 49.0 50.5
okapi-baseline 250 .328 55.6

At this point we do not have the information to allow us to apportion faults
between Okapi and QA-LaSIE. In training on the TREC-8 questions Okapi was
returning answer-containing passages for about 83% of the questions. On this
basis the best QA-LaSIE mean reciprocal rank scores obtained in development
were around .37 for the 50-byte runs and just over .50 for 250-byte runs, as
presented above in Table 1.

Thus the TREC-9 test results represent a significant drop with respect to
training results. Nevertheless, with respect to our best TREC-8 Mean Recip-
rocal Rank results (.081 for the 50-byte run, .111 for the 250-byte run), these
figures represent a very significant improvement, especially given that the ques-
tion set is significantly larger and the questions are “real”, as opposed to what
were artificially created back-formulations in many cases in TREC-8. And, they
validate the central hypothesis of our TREC-9 work that we should abandon
our previous rigid approach in which candidate answer entities either met con-
straints imposed by the question or did not, in favour of a looser approach which
scored them in terms of various factors which suggested that they might be an
answer. Finally, note that in both training and testing, for 250 as well as 50 byte
answers, QA-LaSIE performed better than the Okapi baseline system, indicating
that the NLP analysis is yielding increased value over a naive IR-only approach.
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Abstract. In recent years, interval constraint-based solvers have shown
their ability to efficiently solve challenging non-linear real constraint
problems. However, most of the working systems limit themselves to de-
livering point-wise solutions with an arbitrary accuracy. This works well
for equalities, or for inequalities stated for specifying tolerances, but less
well when the inequalities express a set of equally relevant choices, as for
example the possible moving areas for a mobile robot. In that case it is
desirable to cover the large number of point-wise alternatives expressed
by the constraints using a reduced number of sets, as interval boxes.
Several authors [2,1,7] have proposed set covering algorithms specific to
inequality systems. In this paper we propose a lookahead backtracking
algorithm for inequality and mixed equality/inequality constraints. The
proposed technique combines a set covering strategy for inequalities with
classical interval search techniques for equalities. This allows for a more
compact representation of the solution set and improves efficiency.

1 Introduction

A wide range of industrial problems require solving constraint satisfaction prob-
lems (CSPs) with numerical constraints. A numerical CSP (NCSP), (V, C, D) is
stated as a set of variables V taking their values in domains D over the reals
and subject to constraints C. In practice, the constraints can be equalities or
inequalities of arbitrary type and arity, usually expressed using arithmetic ex-
pressions. The goal is to assign values to the variables so that all the constraints
are satisfied. Such an assignment is then called a solution. Interval constraint-
based solvers (e.g. Numerica [8], Solver [4]) take as input a numerical CSP, where
the domains of the variables are intervals over the reals, and generate a set of
boxes which conservatively enclose each solution (no solution is lost). While they
have proven particularly efficient in solving challenging instances of numerical
CSPs with non-linear constraints, they are commonly designed to deliver punc-
tual solutions. This fits well the needs inherent to equality systems but is less
adequate for several problems with inequalities. Inequalities can be used to state
tolerances, like for example beam-dimension = k ± ε, and it is then admissible
to solve them using punctual solvers. However, in their most general form, they
rather express spectra of equally relevant alternatives which need to be identi-
fied as precisely and exhaustively as possible. Such inequalities will, for example,
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define the possible moving areas of a mobile robot, the collision regions between
objects in mechanical assembly, or different alternatives of shapes for the com-
ponents of a kinematic chain. In all these cases, it is not acceptable to arbitrarily
focus on a specific solution, especially when this choice is forced by idiosyncrasies
of the used solver.

A natural alternative to the punctual approach is to try to cover the spec-
trum of solutions for inequalities using a reduced number of subsets from IRn.
Usually, these subsets are chosen with known and simple properties (interval
boxes, polytopes, ellipsoid,..) [5]. In recent years, several authors have proposed
set covering algorithms with intervals boxes [5,2,7,1]. These algorithms, except
for [5], are designed for inequality systems1, are based on domain splitting and
have one of the two following limitations. Either the constraint system is han-
dled as an indivisible whole2, or the splits are performed statically which means
that their results are not, or only partially, further propagated to the related
variables. In the first case the tractability limits are rapidly reached while in
the second, the information resulting from a split is sub-optimally used. This
paper proposes an algorithm for dynamically constructing an interval-box cov-
ering, for a set of equality/inequality constraints, according to a “maintaining
local consistency” search schema. In numerical domains, local consistency usu-
ally takes the form of either Box, Hull, kB or Bound consistency [8,6], generally
referred to as bound consistency in the rest of the paper. Maintaining bound
consistency (MBC) is a powerful lookahead search technique for numerical CSPs
which allows the splits performed on a given variable domain to be propagated
on domains of other variables, thus reducing the splitting effort. The proposed
technique builds on the feasibility test proposed in [1]. This allows for robustly
constructing sound boxes and devising efficient splitting heuristics for search.
The output is a union of boxes which conservatively encloses the solution set.
As shown by the preliminary experiments, the new algorithm improves efficiency
as well as the compactness of the output representation. In order to reduce the
space requirements, our algorithm can alternatively be used to compute a new
form of consistency called ε1ε2-consistency. ε1ε2-consistency is a weakening of
global consistency which only considers certain projections of the solution space.
It can be used as a preprocessing technique for speeding up further queries.

2 Background

We start by recalling the necessary background and definitions. Parts of the
material described in this section are presented in [1].

2.1 Interval Arithmetic

Intervals. The finite nature of computers precludes an exact representation of
the reals. The set IR, extended with the two infinity symbols, and then denoted
1 In [7,1] equalities are approximated by inequalities.
2 All the variables are split uniformly [5], or the entire set of constraints must be

algebraically reformulated [2].
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by IR∞ = IR
⋃{−∞, +∞}, is in practice approximated by a finite subset F

∞

containing −∞, +∞ and 0. In interval-based constraint solvers, F
∞ usually

corresponds to the floating point numbers used in the implementation. Let <
be the natural extension to IR∞ of the order relation < over IR. For each l in
F

∞, we denote by l+ the smallest element in F
∞ greater than l, and by l− the

greatest element in F
∞ smaller than l.

A closed interval [l, u] with l, u ∈ F is the set of real numbers {r ∈ IR | l ≤ r ≤
u}. Similarly, an open/closed interval [l, u) (respectively (l, u]) with l, u ∈ F is the
set of real numbers {r ∈ IR | l ≤ r < u} (respectively {r ∈ IR | l < r ≤ u}). The
set of intervals, denoted by II is ordered by set inclusion. In the rest of the paper,
intervals are written uppercase, reals or floats are sans-serif lowercase, vectors
in boldface and sets in uppercase calligraphic letters. A box, B = I1 × . . . In is
a Cartesian product of n intervals. A canonical interval is a non-empty interval
of the form [l..l] or of the form [l..l+]. A canonical box is a Cartesian product of
canonical intervals.
Numerical Constraints. Let VIR = {x1 . . . xn} be a set of variables taking their
values over IR. Given

∑
IR = {IR,FIR,RIR} a structure where FIR denotes a

set of operators and RIR a set of relations defined in IR, a real constraint is
defined as a first order formula built from

∑
IR and VIR. Interval arithmetic

methods [3] are the basis of interval constraint solving. They approximate real
numbers by intervals and compute conservative enclosures of the solution space
of real constraint systems.
Relations and Approximations. Let c(x1, . . . xn) be a real constraint with arity
n. The relation defined by c, denoted by ρc, is the set of tuples satisfying c. The
relation defined by the negation, ¬c, of c is given by IRn\ρc and is denoted by ρc.
The global relation defined by the conjunction of all the constraints of an NCSP,
C is denoted ρC . It can be approximated by a computer-representable superset
or subset. In the first case the approximation is complete but may contain points
that are not solutions. Conversely, in the second case, the approximation is sound
but may lose certain solutions. A relation ρ can be approximated conservatively
by the smallest (w.r.t set inclusion) union of boxes, Unionρ, or more coarsely by
the smallest box Outerρ, containing it. By using boxes included into ρ, sound
(inner) approximations Innerρ can also be defined. In [1], Innerρ is defined as
the set {r ∈ IRn | Outer{r} ⊆ ρ}. Figure 1 illustrates the different forms of
approximations.

The computation of these approximations relies on the notion of contracting
operators. Basically, a contracting operator narrows down the variable domains
by discarding values that are locally inconsistent. This is often done using bound
consistency. In this paper we use the notion of outer contracting operator, defined
as follows:
Definition 1 (Outer contracting operator). Let II be a set of intervals over
IR and ρ a real relation. The function OCρ : IIn → IIn is a contracting operator
for the relation ρ iff for any box B,B ∈ IIn, the next properties are true:

(1) OCρ(B) ⊆ B (Contractiveness)
(2) ρ ∩ B ⊆ OCρ(B) (Completeness)

Often, a monotonicity condition is also required [3].
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a) b)

Fig. 1. a) is an Outer approximation; b) The set of white boxes give an Inner ap-
proximation, together with all the grey boxes they give a Union approximation.

2.2 Implementing Approximations of Type Union

In this paper we consider the problem of computing Union approximations.
Several authors have recently addressed this issue. In [5], a recursive dichoto-
mous split is performed on the variable domains. Each box obtained by splitting
is tested for inclusion using interval arithmetic tools. The boxes obtained are
hierarchically structured as 2k-trees. The authors have demonstrated the prac-
tical usefulness of such techniques in robotics, etc. In [7], a similar algorithm
is presented. However, only binary or ternary subsets of variables are consid-
ered when performing the splits. This means that for problems of dimension n,
only quadtrees or octrees need to be constructed instead of the entire 2n-tree.
The approach is restricted to classes of problems with convexity properties. The
technique proposed in [2] constructs the union algebraically, using Bernstein
polynomials which give formal guarantees on the result of the inclusion test.
The approach is restricted to polynomial constraints. Finally, [1] has addressed
the related problem of computing Inner approximations, which are also unions
of boxes but entirely contained in the solution space.

3 Conservative Union Approximation

Interval-based search techniques for CSPs with equalities and inequalities are
essentially dichotomous. Variables are instantiated using intervals. When the
search reaches an interval that contains no solutions it backtracks, otherwise
the interval is recursively split in two halves up to an established resolution. The
most successful techniques enhance this process by applying an outer-contracting
operator to the overall constraint system, after each split. In all the known al-
gorithms, equalities and inequalities are treated the same way. Splitting is per-
formed until canonical intervals are reached and as long as the error inherent to
the outer-contracting operator is smaller than the interval to split. This policy,
referred to as DMBC (Dichotomous MBC) in the rest of the paper, works gener-
ally well for equality systems but leaves place for improvement when inequalities
are involved. Let us consider a small NCSP with the following constraints:

P1 = {x0 = x1 + 1, x2 + 1 = x0 + x1, x2 ≥ x0 + 2, x1 + 2x3 ≥ x4, x2 − x3 ≤ 3}
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where the domains are [-10,10]. For this example, the usual technique, efficiently
implemented in ILOG Solver, a popular constraint-based solver, generates 8280
small boxes when all the solutions are explicitly asked for3. Using a set covering
strategy for inequalities, the technique we propose delivers all the solutions, with
the same precision, using only 199 boxes and with a speed up of three times.

The reason behind these results is that in the first case, the splitting is done
blindly, without taking into account the topology of inequalities. Instead, the
technique we propose includes a feasibility (soundness) test for boxes, which
allows better splitting decisions. Given a constraint and a box, the feasibility
test checks whether all the points in the box satisfy the constraint. Recently, an
original idea was proposed in [1] for safely implementing such tests for general
constraints. Given a constraint c and a box B, it consists of proving that {r ∈ B |
r ∈ ρc} = ∅. The proof is done by construction using DMBC on ¬c and is valid
due to the completeness of DMBC. We use a related approach for computing an
outer approximation of type Union. We define a union conservative contracting
operator as follows:

Definition 2 (Union Conservative Contracting Operator). Let ρ be an
n-ary real relation. A union conservative contracting operator for ρ, UCc : IIn →
P(II)n verifies:

∀B : UCρ(B) ⊇ Union(B
⋂

ρ) (1)

In this paper we use an outer contracting operator on inverted inequalities to
avoid splitting completely feasible boxes. The goal is to generate a more compact
output and to reduce the replication of search effort.

4 Algorithms

We now present an algorithm named UCA6 (Algorithm 1) that computes a
Union approximation for numerical CSPs with equalities and inequalities. We
note lists in the Prolog style [Head|Tail]. B denotes the list of children to be
checked for a node, and P denotes the list of all B. The algorithm presented
is depth-first. Breadth-first and other heuristics can be obtained by treating
the lists B and P as sets, P becoming respectively the union of all the sets
of type B. The algorithm UCA6 iteratively calls the function getNext which
delivers a new Outer approximation for a subspace in the solution space. By con-
struction, the new Outer approximation will not intersect with any previously
computed box. The function getNext has two main components: a reduction
operator, reduc (Algorithm 2), and a splitting operator, split (Algorithm 3).
These operators are interleaved as in a classical maintaining bound consistency
algorithm. Practically, it is preferable to stop the dichotomous split when the
precision of the numeric search tool (splitting and contracting operators) can
lead to unsafe solutions at a given precision ε. An unsafe solution is a box that
may contain no real solution. reduc, checks this state using a function called
Indiscernible(constraint,Box,OC, ε), which is not discussed here in detail4.
3 Typically, the algorithms are optimized for delivering the first solution.
4 The simplest strategy consists of checking that all the intervals are smaller than ε,

but more sophisticated techniques can be built by estimating computational errors.
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Each search node is characterized by the next structures:
* The list B corresponds to a set of splits for the current search node. It

defines the next branches of search. Each split correspond to a new node of
the search.

* A box B defining the domains of the current NCSP.
* The current NCSP C containing only the constraints of the initial NCSP

that can participate in pruning the search space. The constraints that are
indiscernible or entirely feasible in B are eliminated.

* Each constraint q in a node is associated with a box, Bq, such that all the
space in B \ Bq is feasible.

Each Bq is initially equal with the projection of the initial search space on the
variables in the constraint q, after applying OCρq

. One of the features of reduc is
that it removes redundant completely feasible or indiscernible constraints. If the
recent domain modifications of some inequality q have modified Bq, q is checked
for feasibility at line 4, and eventually removed from the current CSP (line 6).
Equalities are similarly eliminated at line 9 when they become indiscernible.

4.1 Splitting Operator

The function split (Algorithm 3) allows for using three splitting strategies. The
first one, splitFeasible, extracts sound subspaces for some inequality, as long as
these subspaces fragment the search space in a ratio limited by a given fragmen-
tation threshold, denoted by frag (line 3). The second and the third strategies
(splitIneq, respectively splitEq), consist of choosing for dichotomous split, a
variable involved in an inequality (respectively an equality) of the current NCSP
C. The heuristics used at lines 3, 3, 3, and 3 in Algorithm 3 can be based on
the occurrence of variables in the constraints of C, or according to a round robin
technique. The domain of the chosen variable is then split in two halves. Tech-
niques based on the occurrences of variables in constraints can also be used to
devise heuristics on ordering the bounds at line 3 in splitFeasible. The criteria
for choosing a constraint at line 3 can look for maximizing the size of the search
space for which a given constraint is eliminated, minimize the number of children
nodes, or maximize the number of constraints that can benefit5 from the split.

Given two boxes B and Bq, where B contains Bq, and given a bound b in
Bq for a variable x, we use the next notations:

* Bf(x,b)[Bq,B] is the (feasible) box not containing Bq obtained from B by
splitting the variable x in b.

* Bu(x,b)[Bq,B] is the (indiscernible) box containing Bq obtained from B by
splitting the variable x in b.

* B 1
2 r(x)[B] is the (indiscernible) box obtained from B by splitting the variable

x in half and retaining its upper half.
* B 1

2 l(x)[B] is the (indiscernible) box obtained from B by splitting the variable
x in half and retaining its lower half.

These concepts are illustrated in the Figure 2.
5 The constraints for which the domains are split may propagate more when OC is

applied.
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B

B1/2r(x)[B]B1/2l(x)[B]

x
x1 x2(x1+x2)/2

Bq

B Bf(x,b)[Bq,B]Bu(x,b)[Bq,B]

x
b

Fig. 2. Splitting operators.

Algorithm 1: Search

procedure UCA6(C = (V, C, D): NCSP)
P = [[{OCρC (D), C, {Bq(OCρC (D))}}]]
while (getNext(P, C, solution)) do
U ← {solution}∪U

end
return U

end.
function getNext(inout:P = [B = [{B ∈ IIn, C : NCSP, {Bq ∈ IIn}} | TB] |
TP ];
in: CG ∈ NCSP; out: solution∈ IIn) → bool

forever do

if (B = [ ]) then

if (TP = [ ]) then

return (false)
else

P ← TP
end
continue

end
(C′,B’,{Bq’}) ← reduc(C, B, {Bq})
B ← TB
if (B’ <> ∅) then

if (C′ = ∅) then

solution ← B’
return (true)

end
B′ ← split(B’,C′,{Bq’})
P ← [B′ | P]

end
end

end.
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Algorithm 2: Problem Reduction

function reduc(in: C : NCSP, B∈ IIn, {Bi∈ IIn}) →(NCSP, IIn, {IIn})
B’ ← OCρC (B)
for all (q={inequality}, q∈ C, Bq ∈ {Bi}) do

if (B’∩Bq <> Bq) then

Bq ← OCρ¬q (B’∩Bq)
if ((Bq = ∅)∨Indiscernible(q,Bq)) then

C ← C \ {q}, {Bi} ← {Bi} \Bq
end

end
end
for all (q=equality, q∈ C) do

if (Indiscernible(q,B’)) then

C ← C \ {q}, {Bi} ← {Bi} \Bq
end

end
return (C, B’, {Bi})

end.

Proposition 1. Let C = (V, C, D) be an NCSP. UCA6 computes a union con-
servative contractive operator for ρC.

Sketch of proof. Both the splitting and the contracting operators are complete
and conservative. As invariant, the union of P with the set of already returned
solutions corresponds to the output of a union conservative contractive operator.
Therefore, when P is empty, the output solutions satisfy the property.

5 Handling Space Limitations

When a representation of all the solutions of a NCSP has to be built, or even
its projection to a quite limited number of variables, the precision is the most
constraining factor. The space required depends exponentially on this precision.
The analytic representation itself is very efficient in space, but is less easy to
visualize and offers less topological information. The amount of aggregation on
solutions is a second factor that controls the required space. The improvements
that can be achieved depend on the problem at hand. In order to characterize the
representations that can be obtained we introduce the notion of ε1ε2-consistency
which allows for constructing the representation of the solution space only for a
given subset of variables.

Definition 3 (ε-solution). An ε-solution of a NCSP N is a box denoted by
νN ,ε = I1 × ...×In (n is the number of variables in N ) such that the search tools
with resolution ε (splitting and contracting operators) cannot reduce it or decide
the absence of solutions inside it.
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Algorithm 3: Splitting

function split(in: B∈ IIn, C : NCSP, {Bi ∈ IIn}) → [{IIn, NCSP, {IIn}} | ]

fun ← choose appropriate(splitFeasible, splitIneq, splitEq)
B ← [ ]
fun(B, C, {Bi}, B)
return B

end.
procedure splitFeasible(in:B,C,{Bi};inout:B ∈ [{IIn, NCSP, {IIn}} | ])

q ← choose {inequality}∈ C, Bq ∈ {Bi}
foreach (bound b of some variable x of q in Bq (e.q. in descending order
of the relative distance rd to the corresponding bound in B) ) do

if (rd <frag) continue
B’ ← Bf(x,b)[Bq,B]

B ← Bu(x,b)[Bq,B]

B ← [{B’, C \ {q}, {Bi} \Bq} | B ]
end
B ← [{B, C, {Bi}} | B ]

end.
procedure splitIneq(in:B,C,{Bi};inout:B ∈ [{IIn, NCSP, {IIn}} | ])

q ← choose {inequality, Bq ∈ IIn} ∈ C
x ← choose variable of q given C
B ← [{B 1

2 r(x)[B], C, {Bi}} | B ]
B ← [{B 1

2 l(x)[B], C, {Bi}} | B ]
end.
procedure splitEq(in:B,C,{Bi};inout:B ∈ [{IIn, NCSP, {IIn}} | ])

q ← choose {equality} ∈ C
x ← choose variable of q given C
B ← [{B 1

2 r(x)[B], C, {Bi}} | B ]
B ← [{B 1

2 l(x)[B], C, {Bi}} | B ]
end.

Definition 4 (ε1ε2-consistency). A constraint c(x1, ...xk) of a NCSP N =
(V, C, D) is ε1ε2-consistent related to the variables in X = {x1, ..., xk}, X⊆V ,
iff:

ρN |X ⊆ ρc, ∀v ∈ Dx1 × ...×Dxk
, v ∈ ρc ⇒ ∃νN,ε2 , ∃b ∈ νN ,ε2 |X , | v−b |< ε1

The procedure UCA6 can be modified for generating the boxes for repre-
senting an ε1ε2-consistent constraint on a set X of variables. This is done by
filtering out of P, the portions of search space, closer to the found solution (line
1) than a distance ε1. The distance is computed in the space defined by the
variables in X.
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6 Experiments

Only a small amount of work exists on computing union approximations for nu-
merical problems with mixed equality/inequality constraints. Often these prob-
lems are recast as optimization problems, with artificial optimization criteria, to
fit the solvers. Hence, no significant set of benchmarks is presently available in
this area. In this section we present a preliminary evaluation on the following
small set of problems.

WP is a 2D simplification of the design model for a kinematic pair consisting
of a wheel and a pawl. The constraints determine the regions where the pawl
can touch the wheel without blocking its motion.

WP = {20 <
√

x2 + y2 < 50, 12y/
√

(x − 12)2 + y2 < 10, x : [−50, 50], y : [0, 50]}

SB describes structural and safety restrictions for the components of a floor
consisting of a concrete slab on steel beams.

SB = {u + c1w
1.5161 − p = 0, u − (c6hs + c7)s ≤ 0,

c2 − c3s + c4s
2 − c5s

3 − hs ≤ 0, c8(pw2)0.3976 − hb ≤ 0, c9(pw3)0.2839 − hb ≤ 0}
Finally, SC is a collision problem requiring some minimal distance between a
trajectory and an object [1].

SC = {∀t,
√

(2.5 sin t − x)2 + (2.5 cos t − y)2 ≥ 0.5, t : [−π..π], x, y : [−5..5]}
On problems with exactly one inequality and no equalities,

UCA6(EqFeasibleIneq) defined further is equivalent to ICAb5 presented
in [1].

For the splitFeasible strategy our implementation chooses the inequa-
lity, q, whose split yields the child node with maximal search space
where q is eliminated as completely feasible. For the other two split-
ting strategies, constraints and variables are chosen in a round robin fash-
ion. We use frag=0.2. We have tested three combinations of these strate-
gies: EqIneq:(splitEq,splitIneq), IneqEq:(splitIneq,splitEq), and EqFeasi-
bleIneq:(splitEq,splitFeasible,splitIneq). The OC operator is 3B-consistency.
DMBC is implemented with ILOG Solver. The obtained results are described in
the following array:

Problem DMBC (boxes / seconds) EqIneq IneqEq EqFeasibleIneq
P1 (ε = .1) 8280 / 3.38s 276 / 1.67s 410 / 1.47s 199 / 0.88s

SB (ε = .02) 67122 / 182.2s 122 / 0.47s 148 / 0.46s 92 / 0.35s
WP (ε = .1) >100000 / >238s 5021 / 2.01s 5021 / 2.01s 5561 / 15.18s
SC (ε = .1) 16384 / 68.36s 3022 / 54.88s 3022 / 54.88s 2857 / 53s

7 Conclusion

Interval-constraint based solvers are usually designed to deliver punctual solu-
tions. Their techniques work efficiently for problems with equalities, but might
alter both efficiency and compactness of the output representation for many
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problems with inequalities. In this paper, we propose an algorithm for numer-
ical CSPs with mixed equality/inequality constraints that remedies this state
of affairs. The approach combines the classical interval search techniques for
equalities with set covering strategies designed to reduce the number of boxes
approximating inequalities.
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Sud, Orsay, Feb 94.

6. O. Lhomme and M. Rueher. Application des techniques CSP au raisonnement sur
les intervalles. Revue d’intelligence artificielle, 11(3):283–311, 97. Dunod.

7. D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints.
Constraints, An International Journal,1, pages 85–118, 96.

8. P. Van Hentenryck. A gentle introduction to Numerica. AI, 103:209–235, 98.



Searching for Macro Operators with
Automatically Generated Heuristics

István T. Hernádvölgyi?
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Abstract. Macro search is used to derive solutions quickly for large
search spaces at the expense of optimality. We present a novel way of
building macro tables. Our contribution is twofold: (1) for the first time,
we use automatically generated heuristics to find optimal macros, (2)
due to the speed-up achieved by (1), we merge consecutive subgoals to
reduce the solution lengths. We use the Rubik’s Cube to demonstrate our
techniques. For this puzzle, a 44% improvement of the average solution
length was achieved over macro tables built with previous techniques.

1 Introduction

In state space search a solution is a sequence of operators. A solution is optimal
if no shorter operator sequence exists that reaches the goal state from the start
state. It is often the case that a suboptimal solution can be obtained much faster
than an optimal one. Our aim is to find near optimal solutions quickly. Macro
search reduces search effort by decomposing the original problem into a series
of subproblems, which can be solved separately. The individual solution paths
concatenated form the final solution. Restricting the solution path to go through
subgoal states unfortunately results in suboptimal solutions. The less the number
of subgoals, the shorter the solutions but also the larger the individual search
spaces and the more the number of macros. In this paper, we reduce the number
of subgoals by merging consecutive ones. To cope with larger search spaces,
we employ automatically generated heuristics. Subgoals which require a large
number of macros to calculate are solved by heuristic search for each problem
instance instead of precomputing and storing the macros. We demonstrate these
techniques on the Rubik’s Cube and compare our results to various approaches.
We conclude that our method is effective and results in significant reduction in
solution length at reasonable extra computational effort.
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2 Subgoals and Macros

In macro search, a problem is decomposed into a series of subgoals. A state
is represented by a vector of state variables and the subgoals correspond to
establishing the goal values of these variables while leaving the values intact for
those state variables which were fixed for previous subgoals. The state variables
fixed for subgoal si are always a subset of the state variables for subgoal si+1.
The last element of the subgoal sequence is the goal state itself. Korf [7] gives
sufficient properties for spaces which make macro search applicable.

The macros are operator sequences composed of the original operators, which
can be used to fix subgoals. The macros for subgoal si fix the values of those
state variables which are specified for this subgoal and leave the values of the
already fixed variables for subgoal si−1 intact. The number of macros for subgoal
si depends on how many ways the state variables to be fixed for this subgoal can
occur such that the state variables fixed for subgoal si−1 have their goal values.
The macro table stores the macros needed to fix each subgoal.

The solution is the concatenation of macros solving the subgoals. At each
subgoal, the macro which solves the current subgoal for the actual values of the
state variables is retrieved and appended to the solution path.

A macro is optimal if no shorter operator sequence exists which fixes the sub-
goal variables without disturbing the ones already fixed. Traditionally macros
were found by uninformed techniques. Short optimal macros can be found by
breadth-first search or by iterative deepening. These methods are general and
work well for short macros, but longer macros require more sophisticated tech-
niques.

Partial-match, bi-directional search [9] is a breadth-first expansion from the
start and the goal state simultaneously. If the two search frontiers meet, an
optimal macro has been found. There are two drawbacks to using this method.
First, all operators must be invertible. Second, the search frontiers must be
kept in memory. While memory requirements are reduced to the square root of
breadth-first search, for long macros and spaces with large branching factor, this
method is infeasible.

Macro composition is a technique developed by Sims [12]. Suppose macros
m1 and m2 have the same invariant state variables. The idea is to compose
m1 with m−1

2 to obtain a new macro m1m
−1
2 which has extra invariants. The

technique is widely used in Computational Group Theory and is often referred to
as the Schreier-Sims method. Korf used macro composition to find those macros
which he could not find by bi-directional search due to lack of memory. The
Schreier-Sims method [1] only uses macro compositions and is proved to be of
polynomial order in the number of state variables. The drawback of this method
is that macros obtained this way are not optimal.

The number of subgoals can be reduced by fixing more than one state vari-
ables for a single subgoal. This almost inevitably results in the explosion of the
number of macros needed. The additional state variables to fix could poten-
tially have a large combination of legal value assignments. When the number of
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macros is excessively large, heuristic search may be employed to fix the subgoal
in question. In fact, this is the approach we take in our Rubik’s Cube experiment.

The length of the optimal macros for merged subgoals may also increase but
will certainly not exceed the sum of the optimal macros corresponding to the
individual subgoals. This is where the solution length reduction comes from.

3 Automatic Generation of Admissible Heuristics

Each subgoal in the macro table represents a different search space. If we are to
find macros with heuristic search, we need different heuristics for every space.
Effective admissible heuristics are hard to hand craft and for macro search we
need heuristics for every subgoal. The first automatically generated heuristic for
the Rubik’s Cube is due to Prieditis [11]. Korf [10] used the pattern database
method of Culberson and Schaeffer [2] to find optimal solutions to random in-
stances of the Rubik’s Cube for the first time. A pattern database is a hash
table of heuristic values indexed by pattern states. Each pattern state represents
a number of states from the original space and is obtained by replacing some of
the values of the state variables with ”blanks”. The space of pattern states is an
abstraction of the original space where optimal distances between an abstract
state and the abstract goal state provide admissible heuristic values for search
algorithms in the original space. The size of the pattern database is the size of
the abstract space. The pattern abstractions used by Culberson and Schaeffer
for the 15-Puzzle and the abstractions used by Korf for the Rubik’s Cube were
hand-crafted. Our method of domain abstraction [4] generalizes the notion of
pattern databases. Instead of just using ”blanks” we proved [3] that any map of
the original domain to a smaller cardinality domain generates a homomorphism
which can be used to derive admissible heuristic values. These maps of the do-
main can be automatically generated. We verified a conjecture due to Korf [10]
in a large scale experiment [5] that the larger the pattern database the fewer the
number of states expanded in the original space and that this trade-off is close
to linear. In our framework, the larger the cardinality of the image domain the
larger the pattern database. We obtain the pattern database by first building
the transpose graph of the abstract space. This is a graph with vertices of the
pattern states but the direction of the operators is reversed. We then perform a
breadth-first expansion of this graph from the abstract goal state. We use the
transpose graph because we do not require the operators to be invertible.

4 The Rubik’s Cube Experiment

The Rubik’s Cube is a well known combinatorial puzzle often used as a bench-
mark problem for new algorithms. Optimal solutions (a dozen or so) were only
recently obtained [10]. Finding short solutions quickly still remains a challenge.
The cube has six colored faces with nine colored stickers each. The moves are
the quarter turns of the faces. The goal of the game is to bring the same color
stickers back on each face after the puzzle has been scrambled. Structurally the
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cube is made up of twenty six little blocks called cubies. There are eight corner
cubies each with three different colored stickers, twelve edge cubies with two
colored faces and six center cubies with one color sticker each (Figure 1). The
center cubies do not move with respect to each other, hence they should not be
part of an encoding of the space. The space has 4.3·1019 states. The quarter turn
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Fig. 1. The Rubik’s Cube

operators U , L, R, F , B and D correspond to a clock-wise quarter turn of the
up, left, right, front, back and down faces respectively. We count two consecutive
quarter turns of the same face in the same direction as a single move (B B =
B2). The edge and corner cubies are labeled as shown on Figure 1.

For the experiment, we built 3 macro tables. Table T18,1 is a macro table with
18 subgoals (the order of these subgoals is listed in Table 1 and correspond to
our preference to solve the cube by hand). T6 is a macro table with six subgoals.
The subgoals of T6 (Table 2) were obtained by merging consecutive subgoals
from T18,1. The first subgoal of T6 is to fix all cubies on the ”up” face at once.
Rather than precomputing and storing in a table the 96 million macros required
for this subgoal, we instead solve each instance of it, as needed, by a heuristic
search with automatically generated heuristics. T18,2 is also a macro table with
18 subgoals. It uses the same subgoal sequence as Korf did in his original work
[6]. At the time, he could not calculate all the optimal macros (because of small
memory computers) and obtained 7 by macro composition. We replaced these 7
by the optimal macros found by our method.

The pattern databases were automatically generated by domain abstraction.
The original domain is composed of the cubie and orientation labels. The non
invariant cubies are masked by a special label ∗ ( they will be fixed for later
subgoals).

Our domain map generator selects two corner cubies or two edge cubies. First,
it randomly decides to either mask their orientation or their identity. Then it
expands the abstract space. If in this expansion the state limit N is reached,
the process is aborted and two more cubies are masked. This continues until a
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pattern database with less than N states is built. The orientation is 0 or 1 for
edge cubies and 0, 1 or 2 for corner cubies. They can be masked with the label
x indicating that the cubie’s orientation is not taken into account. When the
identities of the cubies are masked, instead of their orientation, the following
cases may occur. If the two selected cubies haven’t been masked yet, a new
masking label is assigned to both so they are indistinguishable. If exactly one
is masked, then its masking label is given to the other selected cubie. If both
are masked and the masking labels are different, then all cubies having either of
these labels are relabeled with a new label. Our limit on the number of pattern
states in the database in all cases was N = 2, 000, 000.

Let us demonstrate the heuristic generation process with an example. Con-
sider the subgoal RF,RB in Table 2. At this point, cubies URF , URB, ULB,
ULF , UF , UL, UR, UB, LF , LB and DL are fixed. The subgoal is to find the
macros which fix RF and RB. The goal state gRF,RB is shown below1.






URF0 URB0 ULB0 ULF0 ∗ ∗ ∗ ∗
URF URB ULB ULF DRF DRB DLB DLF
UF0 UL0 UR0 UB0 LF0 LB0 DL0 RF0 RB0 ∗ ∗ ∗
UF UL UR UB LF LB DL RF RB DF DB DR






After a few iterations, the domain abstraction generator could have relabeled
the domain so that the above goal state became






A0 A0 Bx Bx ∗ ∗ ∗ ∗
URF URB ULB ULF DRF DRB DLB DLF
Cx Cx Cx Cx Dx Dx Dx RF0 RB0 ∗ ∗ ∗
UF UL UR UB LF LB DL RF RB DF DB DR






In this case, cubies URF and URB were relabeled to A but their orientations
were kept unique. The other two invariant corner cubies were labeled B and they
also had their orientations masked. Four of the edge cubies were labeled C and
three were masked with label D. The orientations of the invariant edge cubies
were all masked except for RF and RB. Their identity and orientation is kept
unique in order to obtain accurate heuristics for the start states.

For the initial subgoals we used only one pattern database. Subsequent sub-
goals used some of the pattern databases from the preceding subgoal as well.
The heuristic values were combined by the max function to guarantee admissi-
ble heuristic values.

We also performed post processing on the solution paths. First, operators
followed by their inverses cancel. Second, consecutive occurrences of the same
operator may be replaced by a power. In particular, opposing faces of the Rubik’s
Cube do not move common cubies. This allows us to rearrange the operators in
the path such that the path shortening described above can be further applied.

1 cubies are subscripted by their orientation and indexed by position, the line divides
the corner and edge cubies in the vector
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5 Results & Discussion

We generated 10,000 random instances of the Rubik’s Cube by random walks of
500 moves each. These problem instances were then evaluated by the 18 subgoal
and the 6 subgoal macro tables. The histograms are shown on Figure 2. It is clear
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Fig. 2. Histograms of solution lengths obtained for 10,000 random cube states

from these histograms that the longest solutions with the 6 subgoal macro table
are as good as the shortest solutions with the 18 subgoal macro table. It would
be worthwhile to compare these results to the optimal solutions but today even
with the latest methods this is impossible. It is conjectured [10] that the longest
shortest path (diameter) between two states is no more than 20 moves and the
vast majority of states are 18 moves away from the goal state. In light of these
numbers, we estimate that our solutions with T6 are on average 3 times and in
the worst case 4 times of optimal. With T18,1 the solutions are 5 times longer
on average and in the worst case 7 times of the optimal length. The average
solution length on these 10,000 random instances for T6 is 50.3 and for T18,1 it
is 89.8. T18,1 performs slightly worse than T18,2, whose solutions average at 82.7
moves.

T6’s histogram seems to have two humps. We believe that this is due to the
fact that there are many very short macros for the second, third, fourth and
fifth subgoals. If the cubies are in a ”lucky” arrangement they will be fixed with
significantly fewer moves than the average.

Tables 1 and 2 show the detailed statistics for obtaining macro tables T18,1
and T6. Table 1 also gives the combined results for those subgoals which were
merged to form single subgoals in T6. The entries in the first column are the
individual subgoals. It is assumed that the cubies listed before the subgoal are
fixed. For example, in Table 1, the first subgoal is to fix the cubie URF , the
second subgoal is to fix the cubie URB while leaving the previously fixed cubies
(namely URF ) intact. For T6 the first subgoal is to fix the entire upper face
(the 8 cubies listed in the first row and first column of Table 2). The second
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column entries are the number of macros needed for the subgoal. For example,
the number of macros needed for subgoal URB in T18,1 is 21 (second row, second
column) because cubie URB can occur in 21 different places and orientations
once the previous subgoals are fixed. For T6, the first subgoal would require
96,282,624 macros, which we do not store or pre-calculate. The third column lists
the longest of the macros for the subgoal and column four gives the average. The
fifth column is the total number of states expanded to calculate these macros.
Table 1 has rows with label total, which are simply the totals for the subgoals
just above. These can be directly compared to the rows of Table 2, because they
total those subgoals which are merged to form single subgoals in T6. For example,
for the three subgoals LF , LB and DL in Table 1, the total number of macros
is 42, the total of the longest macros is 25 and the total of the average of macro
lengths is 15.7 moves. The corresponding subgoal in Table 2 is {LF,LB,DL}.
For the composite subgoal, the number of macros needed is 2,688. The longest of
these macros is 11 and the average macro length is 8.84 moves. The grand total
column for the tables show the totals for all subgoals. The projected average
performance of T18,1 (grand total row, fourth column in table 1) is 101.6 moves
and it is 58.07 moves for T6. These are longer than the experimentally obtained
averages. The reason is the path post-processing we described earlier.

T18,1 has 258 macros of which 18 are trivial. T6 has 2, 902 macros stored of
which only 5 are trivial. A trivial macro has length 0 and corresponds to an
already fixed subgoal. We counted these as well, because it can happen that a
subgoal is fixed by chance and therefore should be included in the averages.

Both the projected and the experimentally determined worst case for T6 (74
and 68) are much better than the average performance of T18,1 (and T18,2). The
improvement in the average solution length is 44%. These reductions speak for
themselves, however we must also consider at what cost they were achieved.

First we consider memory used to obtain the macro tables. It took 13 different
pattern databases with 15 million entries stored altogether to build the macros
for T18,1. At any time there were no more than three pattern databases in mem-
ory with 5 million entries combined. We needed 11 pattern databases to build T6
and similarly, we never used more than three of these at a time. All macros were
obtained by IDA* [8], hence no memory additional to the pattern databases was
required during the searches. Therefore we can conclude that memory require-
ments are roughly equivalent. In comparison to the partial-match, bi-directional
search method this is big savings in memory usage. The longest macros are of
length 13. For these, a bi-directional search must reach level 6, where the number
of states in the search tree is over 10 million. Keeping in mind that the search
frontier must be in memory and that for finding each macro the search trees
are different, heuristic search with reusable pattern databases is a clear winner.
To obtain the 258 macros of T18.1, a total of 108 million states were expanded,
while 2 billion states were expanded to build the 2, 902 macros of T6. Building
T18,1 took an hour of CPU time, while over a day of CPU time was needed to
build T6.
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Table 1. Macro table T18,1: Statistics

subgoal # of macros longest macro average macro states expanded
URF 24 2 1.54 200
URB 21 3 2.05 8, 300
ULB 18 4 2.22 40, 400
ULF 15 6 3.87 117, 000
UF 24 8 5.33 187, 200
UL 22 8 5.27 171, 600
UR 20 8 5.40 156, 000
UB 18 8 5.22 142, 000

total: 162 47 30.90 822,700
LF 16 9 5.50 128, 000
LB 14 9 5.92 122, 400
DL 12 7 4.33 92, 600

total: 42 25 15.70 344,000
RF 10 9 6.40 91, 200
RB 8 10 6.75 141, 600

total: 18 19 13.15 232,800
DF 6 7 5.33 46, 800
DB 7 11 7.00 286, 600

total: 13 18 12.33 333,400
DRF 12 12 8.25 6, 117, 600
DRB 9 12 8.22 6, 081, 000
total: 21 24 16.47 12,198,600
DLF 2 13 13.00 94, 303, 000

grand total: 258 146 101.6 108,234,500

Table 2. Macro table T6: Statistics

subgoal # of macros longest macro average macro states expanded
URF , URB,
ULB, ULF , 96, 282, 624 ∼ 13 9.30 ∼ 250, 000

UF ,UL,UR,UB not stored! for each solution!
LF ,LB,DL 2, 688 11 8.84 109, 524, 000

RF ,RB 80 12 8.45 5, 526, 200
DF ,DB 24 12 7.75 3, 875, 000

DRF ,DRB 108 13 10.73 1, 914, 102, 800
DLF 2 13 13.00 94, 303, 000

grand total: 2,902 74 58.07 2,127,331,000
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The memory required to obtain a solution with T18,1 is to store the 258
macros. This is negligible. On the other hand, T6 uses two pattern databases
with a combined size of 300,000 entries to search for the first subgoal. It also
has more macros to store for the rest of the subgoals. However, we believe that
even these requirements are negligible with modern computers.

With respect to the speed of obtaining a solution, T18,1 and T18,2 are the
clear winners. It takes a constant number of operations to derive a solution and
the post processing is linear in the number of moves of the solution. T6 performs
a heuristic search to fix the 8 cubies and this on average takes 250,000 states to
expand. While this search takes about a second with our implementation, it is
orders of magnitudes slower than T18,1 and T18,2.

Our primary goal, however, was to significantly reduce the solution lengths.
We believe that the additional time required to build the macros and the initial
search to fix the first subgoal are well worth the effort.

From Tables 1 and 2, we can also determine where the savings come from. The
first 8 subgoals combined in T18,1 are represented by a single search in T6. The
projected worst case for these subgoals is 47 seven moves and the average is 30.9
moves without post processing. We conjecture that it would take no more than
13 moves to fix the eight subgoals together (we can prove a very pessimistic 15),
the average is 9.3 moves. The difference in the predicted average is 21 moves and
hence this one big subgoal merge accounts for almost 50% of the total savings
alone. Then we merged 3 subgoals (LF , LB and DL) into one and effectively
increased the number of macros needed to calculate 64 times (from 42 to 2,688).
The projected expected savings is 7 moves (from 15.7 to 8.84). The rest of the
subgoal combinations show similar ratios, except there is less of an explosion in
the number of macros.

There are two other methods we can compare our approach to. The two ex-
tremes of the scale are the algebraic solutions calculated by the Schreier-Sims
method and the optimal solutions obtained by Richard Korf. Our implementa-
tion of the Schreier-Sims method needs only 8 minutes to build a stabilizer chain2

(the Group Theory equivalent of macro tables). The average solution length is
around 455 moves. A path improvement, suggested by Philip Osterlund in a
private communication, shrinks these paths to an average of 89 moves, but is
also much costlier than obtaining the original solution.

The optimal solutions obtained by Korf [10] required expanding 3 billion
states for optimal solutions of length 16 and close to a trillion states for optimal
solutions of length 18. He used three pattern databases with 172 million entries
combined. The long solutions take days of CPU time individually. In essence,
any one of the optimal searches, even for the short solutions, require expanding
many more states and much more memory than obtaining all macros in both
macro tables combined and solving the 10,000 test instances.

2 This was implemented in the interpreted language MIT Scheme, while our macro
implementation is in C++
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6 Future Work and Conclusion

In this paper we demonstrated that macro operators can be found efficiently with
automatically generated heuristics. The speedup due to heuristic search over un-
informed techniques also allows us to reduce the number of subgoals by merging
consecutive ones. This results in dramatically reduced solution lengths at reason-
able additional cost. On our test problem, the Rubik’s Cube, we achieved 44%
improvement in solution length. Unlike bi-directional techniques, our method
does not require invertibility of operators and can run within user defined mem-
ory limits. We are currently investigating whether the order of subgoals have an
impact on performance. Different encodings of the same problem will give rise
to different types and number of subgoals. However, once a subgoal sequence is
defined, our method of merging consecutive subgoals and using heuristic search
with automatically generated heuristics can improve the solution lengths at the
expense of calculating and storing more macros.
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3. I. T. Hernádvölgyi and R. C. Holte. PSVN: A vector representation for produc-
tion systems. Technical Report TR-99-04, School of Information Technology and
Engineering, University of Ottawa, 1999.
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Abstract. In recent work, Dietterich et al. (1997) have presented the
problem of supervised multiple-instance learning and how to solve it by
building axis-parallel rectangles. This problem is encountered in con-
texts where an object may have different possible alternative configura-
tions, each of which is described by a vector. This paper introduces the
multiple-part problem, which is related to the multiple-instance prob-
lem, and shows how it can be solved using the multiple-instance algo-
rithms. These two so-called “multiple” problems could play a key role
both in the development of efficient algorithms for learning the relations
between the activity of a structured object and its structural proper-
ties and in relational learning. This paper analyzes and tries to clarify
multiple-problem solving. It goes on to propose multiple-instance exten-
sions of classical learning algorithms to solve multiple-problems by learn-
ing multiple-decision trees (Id3-Mi) and multiple-decision rules (Ripper-

Mi). In particular, it suggests a new multiple-instance entropy function
and a multiple-instance coverage function. Finally, it successfully applies
the multiple-part framework on the well-known mutagenesis prediction
problem.

1 Introduction

Supervised learning can be seen as the search for a function h, a set of objects O
towards a set of results R that will be a good approximation of a function f for
which the result is only known for a certain number of objects of O, the examples
of f (Dietterich [5]). This problem consists in inducing the description of h from
a set of pairs (description(objecti), resulti = f(objecti)) - the learning examples
- and criteria - learning bias - that enable a space of functions of O towards R to
be chosen and one function to be preferred to another. The description of objecti
is often referred to as an instance of objecti. Recent research has shown that this
traditional framework could be too limited for complex learning problems [6,11,
2,1]. This is particularly the case when several descriptions of the same object
are associated with the same result, baptized a multiple-instance problem (MIP)
by Dietterich et al. [6]. Thus the term multiple-instance characterizes the case
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where the result f(objecti) is associated not with one instance but with a set of
instances {instancei,1, instancei,2, . . . instancei,σi

}.
Chemistry is a domain par excellence where these multiple-instance prob-

lems are to be found. Dietterich et al. present the task of classifying aromatic
molecules according to whether or not they are ”musky” [6]. Several steric con-
figurations of the same molecule can be found in nature, each with very different
energy properties. In this way it is possible to produce several descriptions of
the different configurations - instances - of this molecule. These descriptions cor-
respond to measurements obtained in each of the different configurations. To
simplify, let us say that a molecule is said to be musky if, in one of its configura-
tions, it binds itself to a particular receptor. The problem of learning the concept
”musky molecule” is one of multiple-instance learning. Maron and Lozano-Perez
[9] consider other possible applications, such as learning a simple description of
a person from a series of images.

Dietterich et al. have proposed different variations of a learning algorithm
where the concepts are represented by axis-parallel rectangles (APR). They ob-
served that ”a particularly interesting issue is how to design multiple-instance

modifications for decision trees, neural networks and other popular machine

learning algorithms” [6]. This paper will analyze the difficulties raised by
multiple-instance problems in general. It will show the link between this problem
and the multiple-part problem (MPP), in which instances are not necessarily al-
ternative descriptions of the object but may be descriptions of different parts
of the object. ”Multiple-extensions” will be proposed for classical algorithms in
order to handle MIP and MPP problems by learning decision trees and rule-
based systems. The main reasons that motivate us for finding such algorithms
are that MPPs play a central role in learning structure-activity relations. This
is the problem that was solved in the REMO learning system (Zucker and
Ganascia [11]), and in the REPART (Zucker, Ganascia et al. [12]) Inductive
Logic Programming system. Section 2, which is a more formal presentation of
the MIP problem, shows how it is linked to the MPP problem and explains how
in the two cases problem solving comes down to learning special concepts called
multiple ones. Section 3 proposes extensions to classical algorithms in order to
solve the multiple-problems and in particular suggests an entropy function and a
multiple-instance coverage function. Section 4 presents the results of predicting
mutagenecity with the multiple-part framework.

2 Multiple-Instance and Multiple-Part Problems

2.1 Definition of Multiple-Instance Problems

For the sake of clarity, let us consider the case where f is a function with boolean
values - a concept - the value of which is known for a subset {objecti} of O.
Thus f(objecti) = TRUE (positive example) or FALSE (negative example)
- depending on whether or not objecti belongs to the concept. We shall note
instancei,j the jth description of object objecti. We shall call X the represen-
tation space for instances and co-instances of instancei,k, the other instances
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of the example objecti, i.e. the set {instancei,j 6=k}. Function h, which we are
trying to learn and must be a good approximation of f , is a function which asso-
ciates a boolean value with a subset of the parts of X, which can be noted by h:
2X → {TRUE, FALSE}. A learning example in the multiple-instance frame-
work is represented in the following form: ({instancei,1, . . . , instancei,j , . . . ,
instancei,σi}, f(objeti)) It should be added that the number σi can vary de-
pending on objecti and that the suffix j of 1 to σi given to instances instancei,j

is purely arbitrary. Note that in the limited theoretical research that has been
done on the PAC-learnability of this problem, the number σi is equal to a con-
stant r [2,3]. In the multiple-instance framework, Dietterich et al. [6] suggest
that if the result of f is positive for an objecti it is because at least one of its

instances has produced this result. If the result is negative it means that none of
its instances can produce a positive result. The researchers support this hypoth-
esis by the fact that in the domain of molecular chemistry they are studying this
is precisely the case. Here, this hypothesis will be called the linearity hypothe-

sis. If we use the vocabulary introduced above, the multiple-instance problem
presented by Dietterich et al. [6] in their seminal paper can be defined as follows:

Definition 1 (MIP). The multiple-instance learning problem consists in learn-

ing a concept from examples that are represented by bags of instances that de-

scribe them, on the linearity hypothesis.

2.2 Representation Shifts for MIPs

The function h to be learned is more complex to learn than a traditional concept
since it takes its values from the set 2X of the parts of X which has a cardinal
that increases exponentially with that of X. Today, no algorithm exists that is
capable of solving this problem directly. A possible approach to too complex a
problem would be to try to change the representation in order to find a repre-
sentation where learning would be less complex (Giordana and Saitta [7]). Using
the linearity hypothesis, it is possible to introduce a boolean concept rvf which
no longer applies to sets of instances but instead to one single instance of these
sets. An instance belongs to this boolean concept if ”the instance has produced
the result”. This representation shift of a concept defined on 2X by a concept
defined on X can be said to be isomorphic (Korf [8]) in that it changes the
structure of the problem but not the amount of information. The concept thus
defined will be called a ”multiple-concept”. Following on from the linearity hy-
pothesis, h is therefore defined as a disjunction of the multiple-concept applied
to the different instances of an object:

f(objeti) = rvf (instancei,1) ∨ . . . ∨ rvf (instancei,σi)

Property 1. The problem of multiple-instance learning of a concept f comes
down to the mono-instance learning of a concept rvf . The description of f is
given as the logical OR of the values of rvf on the different instances of an
object.
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Concept rvf can be read as ”responsible for the value of f”. The multiple-
instance problem can be reformulated with respect to this new function. Figure 1
gives Property 1 in graphic form. If defining MIP is relatively easy, understanding
and solving it are far less simple. To illustrate the problem intuitively, let us
consider the problem we have decided to call the simple jailer problem. Let
there be a locked door and a set of N bunches of keys containing a variable
number of keys such that N+ of the bunches of keys are labeled ”useful” and
N- are labeled ”useless” (not useful). A bunch of keys is said to be useful if
at least one of its keys opens the door, otherwise it is considered useless. The
concept of usefulness could be represented by two classes: that of useful bunches
of keys and that of useless bunches of keys. Learning the concept “useful bunch
of keys” is a MIP problem. Starting from a set of positive and negative examples
of f (here, useful and useless bunches of keys), the concept rvf must be learned,
which characterizes the keys which open the door. This problem is said to be
”simple” as it presumes the linearity hypothesis to hold, i.e. at least one key per
useful bunch of keys is sufficient to open the door.

2.3 The Multiple-Part Problem and How It Is Linked to the
Multiple-Instance Problem

In work done before the development of MIP problems, researchers have intro-
duced a problem that was apparently similar to the MIP and that was baptized a
reformulated problem (Zucker and Ganascia [11]) but which, for reasons of clar-
ity, will henceforth be called the multiple-part problem (MPP). Informally, the
MPP characterizes concept learning from the description of parts of examples.

In MPP as in MIP, each example is represented by a bag of instances. In
MIP, an instance is a snapshot of the entire object, whereas in MPP, an instance
is a small part of the object. LetÕs consider, for example, the application of
MIP and MPP to chemistry. Has shown before, in MIP, the bag of instances
related to a molecule would be measurements on various configurations of this
molecule. In MPP, we would have to cut a molecule in small parts, each of which
would become an instance. Of course, these parts will have to be homogenous.
Putting the description of a single atom, or even of a pair of bonded atoms in
each instance would both be valid MPP representations. In the first case, the
example would be represented by a bag of attribute-value descriptions of each
atom. In the second case, each possible pair of bonded atoms of a molecule will

descriptions

OR

instancei,1

instancei,2

instancei,n i

resulti = f(objecti)

rvf

rvf

rvf
objecti

Fig. 1. Multiple instance learning of f and mono instance learning of rvf
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become an instance of that molecule. We can see now that the jailer problem
mentioned above is more a MPP problem than a MIP problem. In fact, the keys
are seen as parts of the same bunch and each of the instances describes one of
the keys.

As seen above, there can be many valid MPP representation of the same data,
depending on the size of the chosen parts. The linearity hypothesis, stating that
a single instance can be used to identify the belonging of an example to the
studied concept, depends here on the representation. For example, if we know
that the presence of a carbon linked to a nitrogen atom makes a molecule highly
active, it will then be impossible to predict such an activity by examining atoms
individually. Hence, the MPP representation for which an instance corresponds
to an single atom wonÕt respect linearity hypothesis, whereas the one for which
an instance corresponds to a pair of bonded atoms will.

Choosing the appropriate representation in MPP, and moreover shifting be-
tween representations is a crucial problem which is deeply studied in (Zucker
and Ganascia [11]). In their article, they propose an algorithm called Remo

which chooses such an appropriate representation dynamically. Starting with a
very simple representation, it generates increasingly complex representations on
which a MIP learner is launched, until an accurate enough hypothesis is obtained.
In fact, if the linearity hypothesis does not hold on a simple representation, the
MIP learner will not perform well and Remo will shift towards more complex
representations, until the linearity hypothesis is recovered.

The following sections will focus on designing multiple-instance learners,
which as shown here are needed to solve both MIP and MPP.

2.4 Multiple-Concept Learning

As presented in sections 2.1 and 2.3, MIP problems and MPP problems can be
reduced to multiple-concept mono-instance learning (rvf ). Once learned, such
concepts can be used to characterize the initial concept that is looked for. One
of the difficulties of multiple-concept learning comes from the fact that we don’t
know any examples of these multiple-concepts in the traditional meaning of the
term. All we know is whether the disjunction of the rvf applied to co-instances
is positive or negative. Intuitively, we can say that ignoring the specificities of
the problem will not help to learn multiple-concepts satisfactorily. Ignoring a
multiple-problem means that we consider that all the instances of the same
example are from the same class as the example. In the jailer problem, this
comes down to considering that all the keys on a bunch of keys open the door
if the bunch is useful. A classical learning algorithm that is applied without
any modifications to multiple-problems would thus fail to learn an accurate
description of the target concept.
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3 Adapting Concept Learning Algorithms to Learn

Multiple-Concepts

As demonstrated informally in section 2, the learning of multiple-concepts comes
down to the mono-instance learning of multiple-concepts. Moreover, it has been
shown that the difficulty of learning such multiple-concepts is that there are
no learning examples as classically used in the mono-instance framework. There
exists a large number of algorithms that solve the mono-instance concept learn-
ing problem. The most popular ones are top-down inductive systems. They may
be separated into two categories: divide-and-conquer approaches and cover-and-
differentiate ones: The divide-and-conquer algorithms generally represent hy-
potheses as decision trees (Id3, C4.5, etc.) and many use a heuristics based on
a variant of the entropy function to build the tree iteratively. The cover-and-
differentiate algorithms generally represent hypotheses as sets of if-then rules
(Aq, Ripper [4], etc.). Many use a heuristics based on the number of examples
covered by the rules. To date, the main approach for solving the multiple-instance
problem is to learn APR. This section proposes extensions to classical concept
learning algorithms in order to solve the multiple-problems, in particular through
a multiple entropy function and a multiple coverage function.

3.1 Representing Multiple-Concepts and Classifying
Multiple-Instances

It is assumed that the basic notions of decision trees as defined in Id3 or C4.5
(Quinlan [10]) and those of if-then rules as defined in Aq or Ripper [4] are
familiar to the reader . A decision tree used to represent a multiple-concept rvf

will be called multiple-decision tree for the sake of clarity. Similarly, a rule set
used to represent multiple-concepts will be called a multiple-ruleset. Multiple-
decision trees and multiple-rulesets have the same structure as a classical decision
trees and rule sets. In fact, multiple-classifiers differ from traditional classifiers
in the way they are used to classify a new bag and in the way they are learned.
To classify a new object in the MIP where the concept rvf is represented as
a multiple-tree, the entire bag of instances is passed through the tree. If (or
as soon as) one positive leaf is reached by one of the instances, the object is
classified positive, negative otherwise. Similarly, to classify an object in the MIP
with a multiple-ruleset, each instance is passed through each rule. If at least one
instance fires a rule, then the entire bag is classified positive, negative otherwise.
Figure 2 uses the jailer problem to illustrate these notions.

3.2 Learning Multiple Decision-Trees and Rules

Both MIP and mono-instance framework use attribute-value representation. In
addition, classical learning tools use generate-and-test algorithms, exploring a
search space which is as suitable for mono-instance as for MIP. Hence, only the
test part of the algorithm will have to be modified. We will therefore describe
the MIP adaptation of heuristics used in mono-instance learners.
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Fig. 2. Two useful bunches of keys T1+ and T2+ and a useless bunch T3- are used
to induce a multiple-decision tree and a multiple-ruleset. All three bags are correctly
classified by both classifiers

3.3 Multiple-Instance Entropy and Coverage for Multiple-Concept
Learning

Classically, the growing of a decision tree is guided by a heuristics based on
entropy or a related criterion. Given a collection S containing p positive in-
stances and n negative instances of some target concept, the entropy of S rela-

tive to this boolean classification is : Infomono (S(p, n)) = − p
p+n

log2

(

p
p+n

)

−

n
p+n

log2

(

n
p+n

)

The information gain Gain(S, A) of an attribute A relative

to a collection of instances S is defined as: Gain (S(p, n), A) = Info(S) −
∑

v∈V alues(A)
|Sv|
|S| × Info(Sv). Let us define an extension to both the entropy of

S and the gain of an attribute w.r.t. S in the multiple-instance framework. In
this context, let us consider a set S containing p positive instances of the concept
rvf and n negative instances of the concept. Let us introduce two functions π
and ν that, given a set of instances S, return the number of different positive
examples and negative examples that the elements of S are instances of respec-
tively. The entropy that characterizes the (im)purity of an arbitrary collection
of examples ought to be redefined here so as to take into account the fact that
one example is represented by several instances.

In multiple-problems, the goal is to learn a concept for discriminating exam-
ples and not instances. Therefore, the (im)purity ought not to be measured by p
and n, the number of positive or negative instances of the concepts rvf but using
π(S) and ν(S), which represent the number of examples that have representa-
tives in S. The multiple- instance entropy and gain may therefore be defined as:

Infomulti (S(p, n)) = − π(S)
π(S)+ν(S) log2

(

π(S)
π(S)+ν(S)

)

− ν(S)
π(S)+ν(S) log2

(

ν(S)
π(S)+ν(S)

)

Gainmulti (S(p, n), A) = Infomulti(S) −
∑

v∈V alues(A)
π(Sv)+ν(Sv)
π(S)+ν(S) ×
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Infomulti(Sv) This multiple-instance entropy directly implemented in a
decision tree learner will result in overly complex trees. Let us illustrate this
drawback with an example. Suppose that only the root node of the tree has been
induced. Suppose that one of the positive bags from the training set contains
two instances, the first one following the left branch of the root node, and
other one following the right branch. If the left subtree being induced succeeds
in classifying positively the first instance of this positive bag, then trying to
correctly classify the other instance during the induction of the right subtree is
useless. Nevertheless, a learner such as Id3 extended with the multiple-instance
entropy will try to classify both instances correctly, which will lead to an overly
complex tree.

To avoid this drawback, the induction process has to be modified as follows:
when an instance from a positive bag is correctly classified by the tree being
induced, remove all its co-instances from the training set. In our example, as
soon as a subtree attached to the root node correctly classifies an instance of
the positive bag, the other instance is immediately removed. Note that this
drawback is specific to separate-and-conquer algorithms. Based on the multiple
entropy measure and this algorithmic modification, Id3-Mi has been built as a
multiple version of the well known Id3 decision tree learner.

3.4 Learning Multi-rules

This section focuses on ruleset learners that are based on a coverage mea-
surement. The growing procedure of the set of rules used in such kinds of
algorithms relies on the notion of coverage. To learn multiple-rules, it is nec-
essary to redefine this very notion of coverage. In a classical framework,
an instance x is covered by a generalization G (noted COV ER(G, x)) if
G is more general than x. To measure the degree of generality of a gen-
eralization w.r.t. a set of examples, this notion should be refined. In the
multiple instance framework, a generalization G “multi-covers” an objecti
if it covers at least one of its instances: COV ERmulti (G, Objecti) ←
∃j/COV ER (G, instancei,j). The number of covered bags is thus :
COV ERAGEmulti(G) = |{objecti COV ERmulti(G, objecti)}|. Based on this
measure, Ripper-Mi has been built as a multiple-instance extension of Cohen’s
efficient rule learner Ripper [4]. In the next section, various experiments will be
done using this algorithm.

4 Predicting Mutagenecity Using MPP Framework

The prediction of mutagenecity problem is considered as a typical benchmark
for first-order induction tools. In fact, The highly structured nature of molecules
prohibits the straightforward use of propositional representation. The learn goal
is here to generate a theory which, provided a given molecule, will best predict its
mutagenic activity. The available database consist of 230 chemical compounds.
In the following, a subset of 188 molecules known as being regression-friendly
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Table 1. Accuracy measured with a tenfold validation of various learners on the 188
compounds of the regression-friendly set

Learner Accuracy with B0 Accuracy with B2

Ripper-Mi on individual atoms 0.75 (0.04) 0.90 (0.02)
Ripper-Mi on pairs of bonded atoms 0.78 (0.02) 0.90 (0.02)
Progol 0.79 0.86
Foil 0.61 0.83

will be used. For each molecule, the available background knowledge provides
several description levels. At the atomic level, two predicates describe the atoms
and the bonds. At the molecular level, global informations concerning the entire
molecule are given, such as the hydrophobicity and the lowest molecular orbital
of a molecule. The dataset restricted to the atomic description level is often
refered to as B0, whereas the B2 refers to the dataset including both atomic and
molecular informations.

Together with Ripper-Mi, the Remo [11] algorithm was used to generate
various multiple-instance representations from B0 and B2. Using B0, Remo began
by generating a multiple-instance dataset in which each bag contains attribute-
value descriptions of individual atoms. During the next run, Remo generated a
dataset in which each instance of each bag represents a pair of bonded atoms.
Using B2, the two first datasets generated were the same as for B0, except that
molecular attributes were added to each instance. Table 1 displays the accuracy
of Ripper-Mi measured with a tenfold cross validation, on these four MPP-
datasets, as well as the accuracy of two popular relational learners. Progol

and Foil.

The best accuracy was obtained using the simple representation B2 with in-
dividual atoms. Using pairs of bonded atoms in this case does not lead to an
increase of the accuracy. In fact, the global molecular features available in B2 are
highly correlated with the activity of the molecule. Hence, taking into account
pairs of atoms does not bring much more information than using only individ-
ual atoms. On the contrary, using B0, the accuracy of Ripper-Mi significantly
increases when using pairs of bonded atoms instead of just individual atoms.

Despite the fact that Ripper-Mi uses a greedy-search algorithm, it is compet-
itive in terms of predictive accuracy, with respect to other learners. In addition,
it is much faster: using the dataset which represents individual atoms and global
molecular properties, rules sets are generated in an average times of 2.6 seconds.
In addition, the induced hypotheses are concise, as they contain an average of
six rules. The following is an example of rule generated by our learner: active
← (type1 = 1) ∧ (ch1 < 0.288) ∧ (ch2 < -0.404). It indicates that if a
molecule has a pair of bonded atoms such that the first one is of type 1 and has
a partial charge lower than 0.288 and that the second one has a partial charge
lower than -0.404, then the molecule is mutagenic.
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The results obtained on this real-world problem show that the multi-instance
paradigm, sort of Òmissing linkÓ between propositional and first order repre-
sentation, is very promising for a wide range of future learning problems.

5 Conclusion

The problem of supervised multiple-instance learning is a recent learning prob-
lem which has excited interest in the learning community. The problem is en-
countered in contexts where an object may have several alternative vectors to
describe its different possible configurations. This paper has shown that the
problem is subsumed by the multiple-part problem, which can play a key role
in relation-learning algorithms and in inductive logic programming (Zucker et
al.[12]). Multiple-instance learning were first applied to the prediction of drug
activity. Very recently, Maron et Lozano-Perez [9] have proposed a framework
called Diverse Density for solving multiple-instance problems. Solving multiple-
problems using classical algorithms raises important subtle issues that have been
analyzed here. The paper has shown how these problems can be solved using
multiple-concept mono-instance learning algorithms. Extensions to classical al-
gorithms have been proposed to solve these problems by learning decision trees
and decision rules. They are based on two notions: multiple- instance entropy
and multiple-instance coverage. Thanks to these modifications it was possible to
implement the learners Id3-Mi,Ripper-Mi. Our experiments on the mutagen-
esis problem show that our approach performs well, and that MIP algorithms
can handle numeric as well as symbolic data. It also suggests efficient multiple-
instance algorithms could be of primary interest for relational learning tasks.
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Abstract. This paper investigates the application of the multiple clas-
sifier technique known as “stacking” [23], to the task of classifier learning
for misclassification cost performance, by straightforwardly adapting a
technique successfully developed by Ting and Witten [19,20] for the task
of classifier learning for accuracy performance. Experiments are reported
comparing the performance of the stacked classifier with that of its com-
ponent classifiers, and of other proposed cost-sensitive multiple classifier
methods – a variation of “bagging”, and two “boosting” style methods.
These experiments confirm that stacking is competitive with the other
methods that have previously been proposed. Some further experiments
examine the performance of stacking methods with different numbers of
component classifiers, including the case of stacking a single classifier,
and provide the first demonstration that stacking a single classifier can
be beneficial for many data sets.

1 Introduction

Whilst the field of machine learning addresses a wide range of tasks, one of the
most common is that of learning a classifier from flat attribute-value descriptions
of items for which the class is known, with the aim of predicting well the classes
of new items from their attribute values. The usual notion of predicting well is
that of accuracy – making few mistakes.

However in many circumstances different forms of mistake are considered
to be of different levels of importance, e.g. some systems of criminal justice are
based upon a view that it is a greater mistake to punish the innocent than to fail
to punish the guilty. In the case of many commercial classification-style decisions,
the different costs of different forms of misclassification will be estimated and
will influence the decision-making process. There is current interest in the topic
of classifier learning for situations with misclassification costs, as evidenced at
ICML 2000 in papers e.g. [10], and at the workshop on cost-sensitive learning or-
ganised by Margineantu, (notes available at http://www.cs.orst.edu/̃ margindr/
Workshops/CSL-ICML2k/worknotes.html). Some work [22] has also considered
other costs, such as the cost of measuring the values of attributes, e.g. in medical
diagnosis it may not be considered worth conducting an expensive test in some
circumstances. Here we consider only misclassification costs, hereafter referred
to simply as costs, but unlike some authors e.g. [11], we do not restrict ourselves
to the two class case.
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Many different forms of classifier, and different forms of classifier learning
method have been investigated in machine learning, and recently there has
been considerable interest in learning classifiers that combine the predictions
of component classifiers. The two types of multiple classifier method that have
been most commonly investigated are “bagging” (bootstrap aggregating) due
to Breiman e.g. [4], and “boosting” developed by Freund and Schapire e.g. [12].
Both of these have been adapted to multi-class problems with costs, e.g. bagging
(in work involving one of us) [5] and boosting style methods (hereafter simply
referred to as boosting) by Ting and Zheng [21], and by Quinlan in C5, his
commercial (http://www.rulequest.com) successor to C4.5 [16].

In this paper we look at an application of “stacking”, a general idea due to
Wolpert [23], successfully applied by Ting and Witten [19,20], to the problem
of learning classifiers for accuracy performance. The basic concept of stacking
is that the classifier consists of levels of classifiers (or “generalisers”), with the
outputs from each level being inputs to the level above. (Stacking can be seen to
some extent as a generalisation of the sort of architecture typical in neural net-
works.) Ting and Witten developed a successful two level approach, with three
classifiers of different types at the lower level. Their experiments showed that an
important aspect of the success was producing probability-style estimates, not
just class predictions, from the lower level, and their successful higher level gen-
eralisers also produced probability-style estimates. Good probability estimates
enable good cost-based decisions, hence this paper follows up their work by
adapting it to the cost context. Experiments are conducted to evaluate and
compare the performance of some stacking variations against each other, their
component classifiers, and other multiple classifier techniques for problems with
costs.

The paper continues with a description of the stacking method used, then
the experiments and results, and ends with conclusions and further work.

2 Stacking with Costs

When altering multiple classifier methods to make use of cost information one
possible approach is to make the individual component classifiers take the costs
into account, and then combine categorical predictions from these cost-sensitive
classifiers, as was considered for bagging in [5]. However, here we take the ap-
proach of delaying the use of the cost information, using stacking to generate
probability estimates from which the expected cost of each possible classifica-
tion decision can be estimated, and the decision with least expected cost chosen.
(Using pi to stand for the estimated probability that an item is of class i, and
cij to stand for the cost of predicting class j when the actual class of the item
is i, the expected cost of predicting class j is estimated as

∑
i picij). As most of

the implementation for estimating the probabilities was intended to follow that
of Ting and Witten, much of the description below follows theirs.
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2.1 Learning Stacked Classifiers

As stated in the Introduction the stacked classifiers considered here consist of
two levels. The lower, “level-0”, contains individual classifiers that have been
learned from the training data as they would normally be learned for use as
single classifiers, e.g. one of the classifiers is a decision tree produced by the
application of Quinlan’s C4.5 [16] to the training data. When the stacked clas-
sifier is used to classify an item, the level-0 classifiers are given the values of the
attributes for the item, as they would be if they were going to be used as sin-
gle classifiers, but produce class probability estimates rather than a categorical
class prediction, hence the term “generaliser” is more appropriate than classi-
fier. The stacked classifier’s output is produced by the generaliser in the higher
level, “level-1”, which takes the outputs from all the lower level generalisers as
its inputs, estimating the class probabilities from these.

While the process of learning the lower level generalisers is standard, the
higher level has a less standard task in that while it predicts items’ class proba-
bilities, as the lower does, the “attributes” that describe items to the higher level
are the probability estimates from the lower. Further, its training data should
not be generated by simply using the lower level generalisers that were learned
from all the training data, as the higher level generaliser would then be learning
only from probability estimates made by generalisers that had seen the items for
which they were making the estimates. Such estimates could be of very different
accuracy to those produced by the lower level when classifying unseen items –
the circumstance for which the higher level is being learned. Ting and Witten
generated the training data for the higher level by 10-fold cross-validation (CV).
The training data is divided into 10 equal (or near equal) parts. Then for each
of these 10 parts, higher level training data is created by training the lower
level generalisers on the other 9 parts, and producing their probability estimates
for the items in this part. The 10 parts of higher level training data are then
combined to learn the higher level generaliser.

2.2 The Lower Level Generalisers

The experiments reported here use three different types of lower level generaliser,
as per Ting and Witten.

The instance-based approach (IB) used was a modification of the Waikato En-
vironment for Knowledge Analysis (WEKA) reimplementation of Aha’s IB1 [1].
(WEKA has been developed by Witten’s group at Waikato, and a more recent
version can be obtained from http://www.cs.waikato.ac.nz/̃ ml.) The WEKA
implementation does distance weighted class probability estimation – the weight
of each classifying instance is the reciprocal of its distance from the item to be
classified, and the estimated probabilities are normalised to sum to 1. Follow-
ing Ting and Witten, only the three nearest neighbours were used to estimate
the class probabilities, and the distance measure was modified to use Cost and
Salzberg’s Modified Value Difference Metric [8] for discrete attributes.
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The naive Bayesian (NB) approach used was that from WEKA, using Laplace
style (m-) estimation of probabilities for discrete attributes, and normal distri-
bution assumptions for continuous attributes. Again the normalised probability
estimates were used.

The decision tree method used was a modification of C4.5 [16], which was
modified as per [19,20] to use a form of Laplace estimate for the class probabil-
ity estimates at a leaf. Using M for the number of items of the most frequent
class at this leaf, and N for the total number of items at the leaf, the probabil-
ity estimated for the most frequent class is: M+1

N+2 , and the probabilities of the
other classes are proportional to their frequency, such that the sum of the class
probabilities is 1.

2.3 The Higher Level Generalisers

Ting and Witten used two main types of higher level generaliser, but found that
one, an instance-based approach was generally inferior, and our experiments on
this method have shown it to be almost always worse then their other approach,
and are not reported here. Their more successful type of higher level generaliser
was a weighted sum method. At classification time this method estimates the
probability of each class separately, as a weighted sum of the probability esti-
mates from the lower level generalisers. Using pij for the probability estimated
by lower level generaliser j for class i, the higher level generaliser estimates the
probability of class k as

∑
i

∑
j αijkpij , where the coefficients, αijk, are learned

from the training data generated through CV. Ting and Witten experimented
with some alternative methods for learning the coefficients, and here we use
their suggestion of restricting the coefficients to be non-negative, and learning
the coefficients separately for each predicted class minimising the sum of the
squares of the training errors, using Lawson and Hanson’s NNLS routine [13]. In
addition to considering the general case in which the weighted sum estimating
the probability for one class includes terms that are the lower level generalisers’
probability estimates for other classes (as in [19]), we also report results here for
the approach in which the weighted sum estimating the probability of a class
only includes terms that are the lower level generalisers’ probability estimates
for the class being predicted (as in [20]). The latter will be referred to as the
“no off-diagonals” case, as it corresponds to zeroing off-diagonal coefficients in
a view of the relevant coefficient arrays.

The way in which the final probability estimate are used to make a misclassi-
fication cost based decision is such that the accuracy of the ratio of the estimates
may be more important than the accuracy of their differences, so a higher level
generaliser based upon minimising the log loss of probabilities may be preferable
to one minimising the square loss. Hence, in addition to the previously used
higher level generalisers, we have also used the parallel update logistic regres-
sion method of [7] which learns weighting coefficients to minimise training log
loss. Similarly to the main form of the weighted sum method, the probabilities
for each class are estimated independently, from all lower level class probabil-
ity estimates. The logistic is applied to a weighted sum of inverse logistics of
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the lower level estimates. (The use of the inverse logistic was suggested by Rob
Schapire subsequent to the original version of the paper.) Based on heuristic
considerations, the coefficients were updated 30 × number of classes times.

3 Experiments

This section presents the results of the experiments on the stacking and other
methods. The number of data sets publically available with true commercial
misclassification costs is very small as such costs are usually commercially con-
fidential. Hence our experiments here follow the example of some previous mis-
classification cost work, e.g. [21], in using a range of generated misclassification
cost matrices for each data set, so as to enable use of a broad range of commonly
accessible data sets.

The 16 data sets used for the experiments were chosen to have a variety
of numbers of instances, classes, and discrete and continuous attributes, while
favouring data sets that had been used before in previous multiple classifier and
cost work. With one exception, the data sets were simply used as obtained either
direct from the UCI repository [3], as generated from the programs at the UCI
repository, or as obtained in the WEKA distribution. The exception was the
“mushroom” data set in which a class stratified sample of one tenth (rounded
up) of the full data set is used, as the full data set would pose an uninterestingly
easy problem for the learning methods. The data sets will be recognisable by
name to those in machine learning, but a few brief notes are needed to clarify
which versions of some data sets are used: Heart Disease Cleveland (5 classes),
Hypothyroid and Sick Euthyroid (3772 instances, 4 classes and 2 classes respec-
tively), LED-24 (200 instances), Waveform-40 (300 instances).

All experimental results reported are average costs per instance, (for accuracy
results from our earlier experiments see [6], and for alternative suggestions on
what to report see e.g. [15] and Holte’s paper in the ICML 2000 workshop,
but note that some of the alternatives may only be practicable for two class
problems). Each average cost reported is an average over ten experiments. Each
experiment consists of randomly generating ten cost matrices and determining
the performance of each learning method on each cost matrix using a ten-fold
CV. The same splits of the data and cost matrices were used for all learning
methods. (The outer CVs to assess the performance of learning methods are
distinct from the inner CVs used in stacking, which is learning from the same
training data as the other learning methods.)

The random cost matrices were generated in a manner similar to that of
[21]. All the diagonal elements, which correspond to correct predictions, are
given costs of 0, one other element is chosen at random to have cost 1, and
the remaining elements are assigned (uniformly) random integer costs from 1 to
10 inclusive. (Cost matrices thus generated cannot be degenerate in the sense
introduced by Margineantu at the ICML 2000 workshop.) We permit uniform
cost matrices, which were deliberately excluded in [21] for the two class case –
the only one in which they are likely to arise.

Table 1 shows the average misclassification costs per instance of each of the
three types of lower level generaliser (IB, NB and DT), each making cost-sensitive
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Table 1. Cost results for lower level generalisers and some combined methods

Data set IB NB DT Vote PSum Cheap Stack PBag C5 CB
abalone 1.634 1.606 1.600 1.447 1.408 1.505 1.344 1.341 1.588 1.359
colic 0.418 0.543 0.417 0.392 0.363 0.424 0.351 0.348 0.370 0.406
credit-a 0.383 0.640 0.341 0.330 0.330 0.347 0.323 0.279 0.293 0.296
credit-g 0.582 0.488 0.518 0.457 0.450 0.453 0.427 0.441 0.447 0.452
diabetes 0.529 0.483 0.495 0.430 0.423 0.479 0.415 0.409 0.442 0.432
heart 1.994 1.919 2.370 1.942 1.882 1.955 1.714 1.886 2.070 1.905
hypothyroid 0.491 0.234 0.021 0.193 0.162 0.021 0.020 0.018 0.018 0.020
led 1.587 1.643 1.901 1.543 1.504 1.636 1.636 1.565 2.018 1.616
mushroom 0.004 0.131 0.016 0.011 0.029 0.007 0.005 0.004 0.009 0.012
sick 0.064 0.130 0.029 0.038 0.051 0.029 0.027 0.020 0.019 0.025
sonar 0.280 0.913 0.689 0.423 0.324 0.280 0.290 0.388 0.317 0.492
soybean 0.260 0.514 0.384 0.265 0.267 0.261 0.226 0.320 0.309 0.435
splice 0.197 0.175 0.261 0.162 0.157 0.175 0.145 0.212 0.199 0.232
tumor 2.932 2.358 2.899 2.483 2.464 2.361 2.440 2.649 2.689
vowel 0.100 1.569 1.044 0.473 0.439 0.100 0.098 0.481 0.378 0.755
waveform 1.077 0.779 1.414 0.832 0.803 0.785 0.733 0.789 0.724 0.814
Rel 2.28 2.35 1.00 1.32 1.30 0.76 0.69 0.73 0.76 0.85
W/L 3/13 1/15 0/16 1/15 1/15 3/13 0/0 8/8 4/11 4/12

predictions in accordance with its probability estimates, voting amongst the
three cost-sensitive generalisers (Vote), averaging the probability estimates from
the three lower level generalisers then making a cost-sensitive prediction (PSum),
selecting the lowest cost of the three cost-sensitive lower level generalisers on the
basis of a ten-fold CV on the training data (Cheap), cost-stacking using the three
lower level generalisers with the weighted sum higher level generaliser using all
lower level probability estimates (Stack), making cost-sensitive predictions on
the basis of probabilities estimated by our implementation of Bauer and Ko-
havi’s “p-bagging” [2] (using 30 rounds) with unpruned trees and “backfitting”
as suggested (PBag), using C5 boosting (for 30 rounds) with cost-sensitivity
(C5), and using our implementation of Ting and Zheng’s Cost Boosting [21] (for
30 rounds) switching for uniform cost matrices to our implementation of the
version of AdaBoost in [2] (using 30 rounds) as Cost Boosting does not boost
on uniform cost matrices (CB). (The use of 30 classifiers in bagging and boost-
ing is for approximately fair comparability of computational effort in training
with stacking’s 10-fold CV across 3 classifiers.) The results for C5 on the tumor
data set are missing because the early version of C5 being used did not report
misclassification cost results for data sets with so many classes. (Quinlan has
confirmed that more recent versions do report such results.)

There is no universally accepted approach to the comparison across different
data sets of the performance of different learning methods. Here we provide two
forms of summary result. The first, Rel, is the average relative cost over the
data sets, where a method’s relative cost for a data set is its cost divided by
that of the cost-sensitive decision tree method (DT) for the same data set. DT
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was chosen as the basis for this calculation because the main multiple classifier
methods that we are interested in comparing are based on decision tree methods
that are in some respect cost-sensitive. The other form of summary result, W/L,
is the method’s “win/loss” performance relative to that of the Stack method,
i.e. for how many data sets the reported results are better than those of Stack
and for how many they are worse. This is reported as Stack is the main novel
approach to the cost context that we are advocating. Both forms of summary
result are calculated from figures less truncated than those shown in the tables.
The summary figures for C5 exclude the tumor data set. (Stack’s average relative
cost performance excluding the tumor data set is 0.68.)

The results show that Stack has the best average relative cost performance
of all the methods in table 1, and is ahead of all methods except p-bagging (with
which it ties) in terms of the win/loss performance. Interpreting the win/loss
performance in terms of the corresponding level of significance treating each
performance as an individual one-tailed paired sign test, the results would all be
significant at the 95% level, except for the comparison with C5 and with bagging.
Thus Stack’s summary performance is substantially better than that of all its
constituent lower level generalisers, the simpler methods of combining them, and
our implementation of Cost Boosting, better than that of C5, and similar to that
of bagging. Given the reported general superiority of boosting over bagging in
accuracy terms e.g. [17], the results here (and some smaller scale comparisons
in [14]) raise the question as to whether the adaptations of boosting to the cost
situation can be further improved, and additional experiments implementing a
form of the two-class-only AdaCost [11] and Adaboost’ [18] have shown more
similar performance to bagging in the two class case.

As a referee has commented, it should be noted that a better average cost
for a data set does not imply being better on every cost matrix tested, e.g.
examining the results for the 4 data sets on which bagging and stacking perform
most similarly, shows that out of the 400 random cost matrix draws, the method
better on average is better on 227, tied on 19, and worse on 154. (In the 4 data
sets in which they perform least similarly, the method better on average is better
on 399 and tied on 1.)

Table 2 shows the average costs per instance for stacking each of the individ-
ual classifiers and using costs (IBSt, NBSt, DTSt), stacking pairs of classifiers
(IBNBSt, IBDTSt, NBDTSt), stacking all three as before (Stack), stacking all
three using weighted sums with no off-diagonals, (StNO), and stacking all three
using the log loss based high level (StLog).

If the stacked individual classifiers are compared with their non-stacked ver-
sions, it can be seen that all three are better in terms of their average rel-
ative performance, and further all three stacked methods are better in terms
of win/loss performance comparing directly against their non-stacked version,
particularly the NB. Thus it seems that even stacking individual classifiers is
generally beneficial, something which has not been previously demonstrated on
such a variety of data sets. When the effect of increasing the number of stacked
classifiers is examined, the average relative cost results show the desirable trend
that each two classifier stacking technique has better performance than either
of the two corresponding stacked individual classifiers, and the three classifier
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Table 2. Cost results for different stacking methods

Data set IBSt NBSt DTSt IBNBSt IBDTSt NBDTSt Stack StNO StLog
abalone 1.389 1.395 1.401 1.353 1.362 1.362 1.344 1.398 1.345
colic 0.414 0.465 0.417 0.404 0.359 0.363 0.351 0.351 0.359
credit-a 0.390 0.463 0.350 0.363 0.330 0.303 0.323 0.321 0.321
credit-g 0.479 0.437 0.480 0.430 0.460 0.429 0.427 0.447 0.439
diabetes 0.477 0.415 0.448 0.412 0.435 0.409 0.415 0.420 0.422
heart 1.835 1.696 1.959 1.718 1.826 1.713 1.714 1.844 1.716
hypothyroid 0.372 0.231 0.021 0.230 0.021 0.020 0.020 0.020 0.021
led 1.618 1.672 1.958 1.572 1.668 1.669 1.636 1.572 1.558
mushroom 0.004 0.114 0.016 0.004 0.005 0.016 0.005 0.005 0.006
sick 0.065 0.091 0.030 0.062 0.028 0.028 0.027 0.027 0.028
sonar 0.290 0.468 0.465 0.301 0.278 0.442 0.290 0.288 0.274
soybean 0.252 0.415 0.393 0.238 0.235 0.286 0.226 0.228 0.221
splice 0.195 0.174 0.262 0.149 0.185 0.156 0.145 0.145 0.139
tumor 2.622 2.356 2.788 2.364 2.611 2.430 2.440 2.366 2.382
vowel 0.099 1.536 1.039 0.099 0.098 0.929 0.098 0.098 0.085
waveform 1.073 0.744 1.296 0.741 0.990 0.733 0.733 0.740 0.719
Rel 1.89 2.06 0.95 1.41 0.74 0.81 0.69 0.70 0.69
W/L 3/13 3/13 0/16 4/12 2/13 5/11 0/0 7/8 8/8

technique has better performance than any of the two classifier techniques. (Our
preliminary experiments in [6] also show that adding a fourth classifier, a neural
network method, had potential.)

The comparison between the stacking methods shows that the use or non-
use of the off-diagonals in the weighted sum approach is very evenly balanced
consistent with Ting and Witten’s results for accuracy performance. However,
there is an aspect worth noting to the use or non-use of the off-diagonals, namely
that the two data sets on which not using them seems noticeably beneficial
are the LED and tumor data sets, which both have a low ratio of number of
instances to number of off-diagonal coefficients, hence are cases where problems
of overfitting are likely to be observed for the more complex model. Overall the
log loss method performs similarly to the weighted sum.

4 Conclusions and Further Work

This paper has proposed the use in the misclassification cost context of some
stacking methods for combining different types of underlying classifier, and ex-
perimentally compared (using 16 data sets) the cost performance of these meth-
ods against their constituent parts, against other methods of combining the
same constituent parts, and against other cost-sensitive multiple classifiers that
use bagging or boosting style methods. In these experiments the main stacking
method’s summary performance has been superior to that of nearly all the non-
stacking alternatives considered and similar to that of the bagging approach.
The issue of overfitting with the main method when there are too many coef-
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ficients relative to the amount of data has been raised for two data sets. The
possibility of using a log loss based higher level generaliser has been shown. The
performance of bagged decision trees has been generally slightly superior to that
of boosted decision trees, against the typical trend reported for performance in
terms of accuracy. Experiments involving different numbers of constituent clas-
sifiers have shown that stacking can improve the performance of even a single
classifier, and that performance generally improves with additional constituent
classifiers.

The experimental results on stacking are generally encouraging, showing that
the version considered here can be competitive with other previously proposed
methods. By comparison with the bagging and boosting methods here, the stack-
ing method has the benefit of using different types of constituent classifier, but
the bagging and boosting methods can have the benefit of using more classifiers
(of the same type) at classification time, e.g. 30 bagged decision trees versus
one each of three types of classifier. Dietterich [9] has investigated the relative
performance of bagging and boosting on decision trees in terms of the accuracy
of the constituent classifiers produced and their diversity in terms of how much
they differ in their mistakes, as such difference is essential to gaining a benefit
from multiple classifier methods. It might be interesting to compare the diversity
of different types of classifier with that of classifiers of the same type produced
from boosting and bagging, to see how these compare.

While this paper has proposed and successfully demonstrated the potential
of stacking in the misclassification cost context, there is much left to study,
from the suggestion above involving investigating the current methods, through
attempting to improve them, to the possibility of combining stacking with other
methods to improve upon both.

Acknowledgements. This paper was completed while the first author was
on study leave at AT&T Labs Research, whom the author wishes to thank,
particularly Rob Schapire and Michael Collins. Thanks are also due to the UCI
repository maintainers, and the contributors, e.g. R. Detrano for the Cleveland
data, and M. Zwitter and M. Soklic for the primary tumour data which was
obtained from the University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia.

References

[1] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Ma-
chine Learning, 6:37–66, 1991.

[2] E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine Learning, 36:105–139, 1999.

[3] C. Blake, E. Keogh, and C.J. Merz. UCI Repository of Machine Learning Data-
bases. University of California, Department of Information and Computer Science,
Irvine, California, 1998.
http://www.ics.uci.edu/̃ mlearn/MLRepository.html.

[4] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.



224 M. Cameron-Jones and A. Charman-Williams

[5] M. Cameron-Jones and L. Richards. Repechage bootstrap aggregating for mis-
classification cost reduction. In PRICAI’98: Topics in Artificial Intelligence –
Fifth Pacific Rim International Conference on Artificial Intelligence, pages 1–11.
Springer Verlag, 1998.

[6] A. Charman-Williams. Cost-stacked classification, 1999. Honours thesis, School
of Computing, University of Tasmania.

[7] M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, adaboost and breg-
man distances. In Proceedings of the Thirteenth Annual Conference on Computa-
tional Learning Theory, pages 158–169. Morgan Kaufmann, 2000.

[8] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10:57–78, 1993.

[9] T.G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting and randomization. Machine
Learning, 40:139–157, 2000.

[10] C. Drummond and R.C. Holte. Exploiting the cost (in)sensitivity of decision tree
splitting criteria. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML-2000), pages 239–246. Morgan Kaufmann, 2000.

[11] W. Fan, S.J. Stolfo, J. Zhang, and P.K. Chan. Adacost: Misclassification cost-
sensitive boosting. In Machine Learning: Proceedings of the Sixteenth Interna-
tional Conference (ICML ’99), pages 97–105, 1999.

[12] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55:119–139, 1997.

[13] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. SIAM, 1995.
[14] M.G. O’Meara. Investigations in cost boosting, 1998. Honours thesis, School of

Computing, University of Tasmania.
[15] F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation

for comparing induction algorithms. In Machine Learning: Proceedings of the
Fifteenth International Conference (ICML’98). Morgan Kaufmann, 1998.

[16] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
The Morgan Kaufmann Series in Machine Learning.

[17] J.R. Quinlan. Bagging, boosting and c4.5. In Proceedings of the Thirteenth Amer-
ican Association for Artificial Intelligence National Conference on Artificial In-
telligence, pages 725–730. AAAI Press, 1996.

[18] K.M. Ting. A comparative study of cost-sensitive boosting algorithms. In Proceed-
ings of the Seventeenth International Conference on Machine Learning (ICML-
2000), pages 983–990. Morgan Kaufmann, 2000.

[19] K.M. Ting and I.H. Witten. Stacked generalization: when does it work? In Pro-
ceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
pages 866–871. Morgan Kaufmann, 1997.

[20] K.M. Ting and I.H. Witten. Issues in stacked generalization. Journal of Artificial
Intelligence Research, 10:271–289, 1999.

[21] K.M. Ting and Z. Zheng. Boosting trees for cost-sensitive classifications. In
Machine Learning: ECML-98: Proceedings of the Tenth European Conference on
Machine Learning, pages 190–195. Springer-Verlag, 1998.

[22] P.D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid ge-
netic decision tree induction algorithm. Journal of Artificial Intelligence Research,
2:369–409, 1995.

[23] D.H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.



Stratified Partial-Order Logic Programming

Mauricio Osorio1 and Juan Carlos Nieves2

1 Universidad de las Americas
CENTIA

Sta. Catarina Martir,
Cholula, Puebla
72820 Mexico

josorio@mail.udlap.mx
2 Universidad Tecnologica de la Mixteca
Instituto de Electronica y Computacion

Huajuapan de Leon, Oaxaca
69000 Mexico

jcnieves@nuyoo.utm.mx

Abstract. The stable semantics has become a prime candidate for
knowledge representation and reasoning. The rules associated with
propositional logic programs and the stable semantics are not expres-
sive enough to let one write concise optimization programs. We propose
an extension to the language of logic programs that allows one to express
optimization problems in a suitable well. In earlier work we defined the
declarative semantics for partial order clauses. The main contribution of
our paper is the following: First, we define the language of our extended
paradigm as well as its declarative semantics. Our declarative semantics
is based on translating partial order clauses into normal programs and
the using the stable semantics as the intended meaning of the original
program. Second, we propose an operational semantics for our paradigm.
Our experimental results show that our approach is more efficient than
using the well known system SMODELS over the translated program.

1 Introduction

The stable semantics has become a prime candidate for knowledge representa-
tion and reasoning. The rules associated with propositional logic programs and
the stable semantics are not expressive enough to let one write concise optimiza-
tion programs. We propose an extension to the language of logic programs that
allows one to express optimization problems in a suitable well. Furthermore, our
proposal allows some degree of integration between logic and functional program-
ming. We use partial order clauses as the functional programming ingredient and
disjunctive clauses as the logic programming ingredient.

Partial-order clauses are introduced and studied in [11,10], and we refer the
reader to these papers for a full account of the paradigm. In comparison with
traditional equational clauses for defining functions, partial-order clauses offer
better support for defining recursive aggregate operations. We illustrate with an

E. Stroulia and S. Matwin (Eds.): AI 2001, LNAI 2056, pp. 225–235, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



226 M. Osorio and J.C. Nieves

example from [11]: Suppose that a graph is defined by a predicate edge(X,Y,C),
where C is the non-negative distance associated with a directed edge from a node
X to node Y, then the shortest distance from X to Y can be declaratively specified
through partial-order clauses as follows:

short(X,Y) ≤ C :- edge(X,Y,C)
short(X,Y) ≤ C + short(Z,Y) :- edge(X,Z,C)

The meaning of a ground expression such as short(a,b) is the greatest lower
bound (smallest number in the above example) of the results defined by the
different partial-order clauses. In order to have a well-defined function using
partial-order clauses, whenever a function is circularly defined (as could happen
in the above example when the underlying graph is cyclic), it is necessary that the
constituent functions be monotonic. We refer to this paradigm as partial-order
programming, and we have found that it offers conciseness, clarity, and flexibility
in programming problems in graph theory, optimization, program analysis, etc.
Partial-order program clauses are actually a generalization of subset program
clauses [7,8].

The declarative semantics of partial-order clauses is defined by a suitable
translation to normal clauses. We have studied this approach in full detail in [14].
However, this is the first time that we consider the use of the stable semantics
[5]). Since the stable semantics is defined for disjunctive clauses and constraints,
we obtain a paradigm that allows the integration of partial-order programs with
disjunctive programs. We have solved some optimization problems (taken from
the archive of the ACM programming contest) in this paradigm and we claim
that the use of partial-order clauses were suitable in this respect.

The operational semantics of our language combines a general form of dy-
namic programming with the SMODELS1 algorithm (proposed in [15]). We com-
pute all the stable models of the program by dividing the program in modules,
computing the models of the lower module, reducing the rest of the program
with respect of each model found and iterating the process. When we need to
compute the stable models at a given module, we have two cases: In the first
case the module consists of partial-order clauses. We use dynamic programming
to compute the (exactly one) model of such module. In the second case the
module consists of normal clauses. We use SMODELS to obtain all the stable
models. If there are no stable models the entired program is inconsistent. The
rest of this paper is organized as follows: Section 2 provides a basic background
on partial-order programming. We also define our class of legal programs. In
section 3 we present the declarative semantics of our language. In section 4 we
present the operational semantics of our full language. The last section presents
our conclusions and future work. We assume familiarity with basic concepts in
logic programming2.

1 SMODELS is a system available in : http://www.tcs.hut.fi/Software/smodels/
2 A good introductory treatment of the relevant concepts can be found in the text by

Lloyd [9]



Stratified Partial-Order Logic Programming 227

2 Background

Our language includes function symbols, predicate symbols, constant symbols,
and variable symbols. A f-p symbol is either a function symbol or a predicate
symbol. A term is a constant symbol or a variable symbol. Function atoms are
of the form f(t1, . . . , tn) = t, where t, t1, . . . , tn are terms and f is a function
symbol of arity n. Inequality atoms are of the form f(t1, . . . , tn) ≤ t, where
t, t1, . . . , tn are terms and f is a function symbol of arity n. Predicate atoms are
of the form p(t1, . . . , tn), where t1, . . . , tn are terms and p is a predicate symbol
of arity n. A f-p atom is either a function atom or a predicate atom. A f-p literal
is a f-p atom or a negated f-p atom.

A program P is a pair < PO,DA > where PO is a set of partial-order clauses
and DA is a set of disjunctive clauses. Partial-order clauses are of the form:

f(terms) ≤ expression :- lit1, . . . , litk

where each liti (with 1 ≤ i ≤ k) is a f-p literal. By terms we mean a list of terms.
The syntax of expression is given below:

expression ::= term | f(exprs)
exprs ::= expression | expression , exprs

The symbol f stands for a function symbol, also called user-defined function
symbol. A disjunctive clauses is of the form: head1 ∨ . . .∨headn :- l1 . . . lk, where
n ≥ 0, k ≥ 0, each headi is an atom, and each lj is a f-p literal. When n = 0
the clause is called a constraint. Our lexical convention in this paper is to begin
constants with lowercase letters and variables with uppercase letters. We assume
that our programs use only ≤ clauses. Since we assume complete lattices, the ≥
case is dual and all the results hold immediately.

We now present several examples that are naturally expressed in our
paradigm.

Example 2.1 (Data-flow Analysis). Partial-order clauses can be used for carrying
out sophisticated flow-analysis computations, as illustrated by the following pro-
gram which computes the reaching definitions and busy expressions in a program
flow graph. This information is computed by a compiler during its optimization
phase [1]. The example also shows the use of monotonic functions.

reach out(X) ≥ reach in(X) - kill(X).
reach out(X) ≥ gen(X).
reach in(X) ≥ reach out(Y) :- pred(X,Y).

In the above program, kill(X) and gen(X), are predefined set-valued functions
specifying the relevant information for a given program flow graph and basic
block X. We assume an EDB pred(X,Y), that defines when Y is predecessor of
X. The set-difference operator (-) is monotonic in its first argument, and hence
the program has a unique intended meaning as it is shown in [1]. A general result
that explains this fact can be found in [11]. Our operational semantics behaves
exactly as the algorithm proposed in [1] to solve this problem. We consider this
fact as a main evidence that our operational semantics is efficient.
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Example 2.2 (Shortest Distance). The formulation of the shortest-distance prob-
lem is one of the most elegant and succinct illustrations of partial-order clauses:

short(X,Y) ≤ C :- edge(X,Y,C)
short(X,Y) ≤ C + short(Z,Y) :- edge(X,Z,C)

The relation edge(X,Y,C) means that there is a directed edge from X to Y with
distance C which is non-negative. The function short(X,Y) = C means that a
shortest path (in terms of costs) from node X to node Y has cost C. The + operator
is monotonic with respect to the numeric ordering, and hence the program is
well-defined. The logic of the shortest-distance problem is very clearly specified
in the above program.

This problem can be solved using dynamic programming, that corresponds
in this case to Floyd’s algorithm. Our operational semantics behaves exactly as
Floyd’s algorithm and hence this is again a main evidence that supports that
our approach is suitable.

Suppose we wanted to return both the shortest distance as well as the shortest
paths corresponding to the shortest distance. We then can include the following
code to our program:

path(X,Y) ∨ complement(X,Y) :- edge(X,Y,C).
:- node(X), ini(A), path(X, A).
:- node(X), fin(D),path(D,X).
:- node(X), node(Y), node(Y1), path(X,Y),
path(X,Y1), neq(Y,Y1).
:- node(Y), node(X), node(X1), path(X,Y),
path(X1,Y), neq(X,X1).

r(X) :- ini(X).
r(X) :- num(C), node(X), node(Y), r(Y),path(Y,X).
k(Y) :- node(X), node(Y), path(X,Y).

:- node(D), k(D), not r(D).
:- fin(D), not r(D).

cost(X,Y,C) :- node(X), node(Y),num(C),path(X,Y), edge(X,Y,C).
cost(X,Y,C) :- node(X), node(Y), node(Z), num(C),num(C1), num(C2)

,path(X,Z), edge(X,Z,C1), cost(Z,Y,C2), C = C1 + C2.
:-num(C), num(C1), ini(A), fin(D), cost(A,D,C),
short(A,D) = C1, C > C1.

The meaning of the constraint :- node(X), ini(A), path(X, A) is that
the initial node of the graph is of indegree zero. In a similar way, the meaning of
the second constraint :- node(X), fin(D),path(D,X) is that the final node
of the graph is of outdegree zero. The idea of the third and fourth constraints,
is that every node of the path must be of indegree (and outdegree) less or equal
to one. The relation r(X) defines the nodes that are possibly reachable since the
initial node. The relation cost(X,Y) defines the cost of the partial paths and
the total path to reach the final node.

The declarative semantics defines as many models as shortests paths. In each
model, path defines such shortest path.

Example 2.3 (Matrix Chain Product). [16]
Suppose that we are multiplying n matrices M1, ...Mn. Let ch(J,K) denote the
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minimum number of scalar multiplications required to multiply Mj , ...Mk. Then,
ch is defined by the following inequalities:

ch(I,I) ≤ 0 :- size(N), 1≤I, I≤ N

ch(J,K) ≤ ch(J,I)+ch(I+1,K) + r(J)*c(I)*c(K) :- J≤I, I≤ K-1

where we encode the size of matrix Mi by r(I), number of rows, and c(I),
number of columns, and we suppose that c(I)=r(I+1). The functions r and c
have been omitted in the above code.

In order to capture the >-as-failure assumption, we assume that for every func-
tion symbol f, the program is augmented by the clause: f(X) ≤ >.

3 Declarative Semantics

In the following we assume that our programs are free-head cyclic, see [2]. We
adopt this assumption for two reasons. First, we have never found an interesting
example where this condition does not hold. Second, free-head cyclic programs
can be translated to normal programs such that the stable semantics agree. In
this case SMODELS is a very fast tool to compute stable models.

We now explain how to translate a disjunctive clause into a set of normal
clauses.

Definition 3.1. Let P be a program such that P :=< PO,DA >. We define
the map of DA to a set of normal clauses as follows: Given a clause C ∈ DA
where C is of the form p1(terms)∨ . . .∨pn(terms) : −body, we write dis-nor(C)
to denote the set of normal clauses:

pi(terms) : −body,¬p1(terms), . . . ,¬pi−1(terms),¬pi+1(terms), . . . ,¬pn(terms)

where 1 ≤ i ≤ n.
We extend this definition to the set DA as follows. Let dis-nor(DA) denote the
normal program:

⋃

C∈DA

dis− nor(C)

From now on we may assume that every disjunctive clause of the program has
been translated as before. We also get rid of the constraints as follows: Replace
every constraint clause :- RHS by new :- RHS, ¬ new.

Where new is a propositional symbol that does not appears at all in the
original program.

Definition 3.2. A program P is stratified if there exists a mapping function,
level : F ∪ Pr → N , from the set F of user-defined (i.e., non-constructor)
function symbols in P union the set Pr of predicates symbols of P to (a finite
subset of) the natural numbers N such that all clauses satisfy:
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(i) For a clause of the form

f(term1) ≤ term2 : −RHS

where RHS is a conjunction of f-p atoms then level(f) is greater than level(p)
where p is any f-p symbol that appears in RHS.

(ii) For a clause of the form

f(term) ≤ g(expr) : −RHS

where f and g are user-defined functions, and RHS is as before then level(f)
is greater or equal to level(g), level(f) is greater than level(h), level(f) is
greater than level(p), level(g) is greater to level(p), where p is any f-p symbol
that appears in RHS and h is any user-defined function symbol that occurs
in expr.

(iii) For a clause of the form

f(terms) ≤ m(g(expr)) : −RHS

where RHS is as before and m is a monotonic function then, level(f) is
greater than level(m), level(f) is greater or equal to level(g), level(f) is
greater than level(h), level(f) is greater than level(p), where p is any f-p
symbol that appears in RHS and h is any function symbol that occurs in
expr.

(iv) For a clause of the form

p(term) : −RHS

where RHS is as before, if f is a f-p symbol that appears in RHS then level(p)
is greater than level(f).

(v) No other form of clause is permitted.

Although a program can have different level mappings we select an image set
consisting of consecutive natural numbers from 1. In addition we select the level
mapping such that level(p) 6= level(f) where p is a predicate symbol and f is a
function symbol. In the above definition, note that f and g are not necessarily
different. Also, non-monotonic “dependence” occurs only with respect to lower-
level functions. We can in fact have a more liberal definition than the one above:
Since a composition of monotonic functions is monotonic, the function m in the
above syntax can also be replaced by a composition of monotonic functions,
except that we are working with functions rather than predicates.

Considering again our shortest path example, a level mapping could assign:
All predicate symbols of the EDB have level 1. The function symbol + has level
2. The function symbol short has level 3. The rest of the predicates have level
4.

Our next step is to flatten the functional expressions on the right-hand sides
of the partial-order clauses [3,6]. We illustrate flattening by a simple example:
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Assuming that f, g, h, and k are user-defined functions the flattened form of a
clause f(X,Y) ≥ k(h(Y,1)) is as follows:

f(X,Y) ≥ Y2 :- h(Y,1) = Y1, k(Y1) = Y2.
In the above flattened clause, we follow Prolog convention and use the notation
:- for ‘if’ and commas for ‘and’. The order in which the basic goals are listed
on the right-hand side of a flattened clause is the leftmost-innermost order for
reducing expressions.

3.1 Translating a Partial Order Program into a Normal Program

The strategy here is to translate a stratified program to a standard normal
program and then to define the semantics of the translated normal program as
the semantics of the original program. We work in this section with the normal
form of a program. This form is obtained from the flattened form by replacing
every assertion of the form f(t) = t1 by the atom f=(t, t1) and every assertion
of the form f(t) ≤ t1 by f≤(t, t1). Except for minor changes, the following four
definitions are taken from [13]. Just to keep the notation simple we assume that
functions accept only one argument.

Definition 3.3. Given a stratified program P , we define P ′ to be as follows:
Replace each partial-order clause of the form

E0 :- condition, E1, . . . , Ek, . . . , En

by the clause
E0 :- condition, E1, . . . , E

∗
k , . . . , En

where E0 is of the form f≤(t1, X1), Ek is of the form g=(tk, Xk), E∗
k is of the

form g≤(tk, Xk) and f and g are (not necessarily different) functions at the same
levelP . Note that it is possible that k = n.

Definition 3.4. Given a program P , we define head(P) to be the set of head
function symbols of P , i.e., the head symbols on the literals of the left-hand sides
of the partial-order clauses.

Definition 3.5. Given a program P, a predicate symbol f≤ which does not occur
at all in P, we define ext1(f) as the following set of clauses:

f=(Z, S) :- f≤ (Z, S), ¬ fbetter(Z,S)
fbetter(Z, S) :- f≤(Z, S1), S1 < S
f≤(Z, S) :- f≤(Z,S1), S1 < S
f≤ (Z, >)
f≤(Z, C) :- f ≤(Z, C1), f≤(Z, C2), glb(C1, C2, C).

We call the last clause, the glb clause, and it is ommited when the partial order
is total, glb(C1, C2, C) interprets that C is the greatest lower bound of C1 and
C2. Symmetric definitions have to be provided for f≥ symbols.
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Definition 3.6. Given a stratified program P , we define
ext1( P) :=

⋃
f∈ head(P ) ext1(f), and

transl(P) := P ′ ∪ ext1(P ), where P ′ is as the definition 3.3.

As an example of the translation we use program Short given in example 2.2
short≤(X, Y, >).
short≤(X, Y, C) :- edge(X,Y,C).
short≤(X, Y, C) :- edge(X, Z, C1), short≤(Z, Y, C2), C = C1 + C2.
short≤(W, W1, X) :- short≤(W, W1, X1), X1 < X.
short<(W, W1, X) :- short≤(W, W1, X1), X1 < X.
short=(W, W1, X) :- short≤(W, W1, X), ¬short<(W, W1, X).

Definition 3.7. For any stratified program P , we define D(P), as the set of
stable models for transl(P ).

Definition 3.8. For any stratified program P , we define level(P ) = max{n :
level(p) = n, where p is any f-p symbol }

Lemma 3.1. Given any program P of level n greater than 1, there exists P1
such that the following holds:

1. Level(P1) < n,
2. Every f-p symbol p in the head of every clause in (P \ P1) is of level n.
3. All clauses in (P \P1) are partial-order clauses or all clauses in (P \P1) are

disjunctive clauses.
4. If Mi for 1 ≤ i ≤ k > 0 are all the stable models of P1 then stable(P ) =

{M |M ∈ stable((P \ P1)Mi), 1 ≤ i ≤ k}. Moreover, if (P \ P1) consists of
partial-order clauses then SEM((P \ P1)Mi) has exactly one model. (Here
we understand PM , where P is a program and M an interpretation of P , as
reducing P w.r.t. M . A formal definition is given in [4].

Proof. (Sketch) We actually select P1 as the program that consists of every clause
where the level of the head is less than n. Therefore 1, 2 and 3 are immediate. To
prove 4 we note that each Mi is a candidate to be completed as a stable model
of P . Moreover the stable semantics satisfies reduction, see [4]. Also, if M is a
stable model of P then exists M ′ ⊂ M over the language of P1 that is a stable
model of P1. Therefore, exists i such that Mi = M ′.

A naive idea to obtain the semantics of a program would be to translate a
program and use the SMODELS system. However this could be very inefficient.
We have in fact tried several examples where SMODELS got the answer in
several minutes while in our current implementation we got an answer in less
than one minute3.
3 Both systems ran in C++ under a SUN SPARC station
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4 Operational Semantics

We discuss the operational semantics of our language. We assume that our lattice
is finite. Our lemma of the last section is one of the notions that we use to de-
fine our operational semantics. Based on this notion, computing the operational
semantics of a program reduces almost4 to compute the operational semantics
of a program of level 1. Here, we have two cases:

First, when the program consists only of normal clauses where the body of
every clause is free of function atoms. Then, we can use the algorithms that are
used by the well known systems: SMODELS and DLV5. We have successfully
tried this process with several program examples, meaning that it is possible to
handle programs that after instantiating them they contain hundreds of thou-
sands of rules.

Second, when the program consists only of partial-order clauses. Then we can
use dynamic programming to compute the glb among the fix-points of the pro-
gram, see [11]. The precise formulation of the operational semantics of a program
is the following. Let Fix-Point-Semantics(P) be the fix-point semantics defined
in [12]. Let SMODELS(P) be the operational semantics for normal programs
(with constraints) given in [15]. Let reduce(P,M) be PM (already defined). Our
operational semantics is then OP(P, n) where n is the level of P.

Function OP(P, n)
if n = 1 return(One level(P));
else
{

let MS = OP (P, n − 1);
if MS = ∅ return ∅;
else
{

M ′ = ∅;
for each M ∈ MS

P ′ = reduce(P, M); M ′ = M ′ ∪ One level(P ′);
return(M ′);

}
}

Function One level(P)
if P is a partial-order program return(Fix-Point-Semantics(P));
else return(SMODELS(P));

The correctness of our algorithm follows immediately by induction on the
level of our program, lemma 3.1, proposition 3 in [12] and the well known cor-
rectness of the SMODELS algorithm.
4 We also need to reduce the program w.r.t. the semantics of a lower module
5 DLV is a system available in : http://www.dbai.tuwien.ac.at/proj/dlv/
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5 Conclusion and Related Work

Partial-order clauses and lattice domains provide a concise and elegant means
for programming problems involving circular constraints and aggregation. Such
problems arise throughout deductive databases, program analysis, and related
fields. Our language allows some degree of integration between logic and func-
tional programming. We use partial order clauses as the functional programming
ingredient and disjuntive clauses as the logic programming ingredient. We use
the Stable smantics to take care of the relational component. We also discuss an
operational semantics that integrates dynamic programming with the algorithm
used in SMODELS.
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Abstract. A robotic agent experiences a world of continuous multivari-
ate sensations and chooses its actions from continuous action spaces.
Unless the agent is able to successfully partition these into functionally
similar classes, its ability to interact with the world will be extremely lim-
ited. We present a method whereby an unsupervised robotic agent learns
to discriminate discrete actions out of its continuous action parameters.
These actions are discriminated because they lead to qualitatively dis-
tinct outcomes in the robot’s sensor space. Once found, these actions can
be used by the robot as primitives for further exploration of its world.
We present results gathered using a Pioneer 1 mobile robot.

1 Introduction

To live sucessfully in a world, robotic agents must be able to derive meaning from
continuous state spaces and select actions from continuous ranges of possibility.
In order to thrive agents must be able to find discrete classes of states and actions
that enable them to achieve their goals. For example, the Pioneer 1 mobile robot
has a pair of independent drive wheels and a variety of sensors including seven
sonars and a CCD camera. To move, the robot must select a speed for its right
and left wheels from an infinite range of possible parameters. While it acts, the
values returned from its sonars, camera and other sensors will transition through
a subset of an infinite number of states. As far as the robot can tell, every one of
its possible wheel speed settings is a different action and every one of its distinct
sensor readings is a different state. If the robot had to use these as primitives,
it would be unable to understand the world or determine what actions to take
in any reasonable amount of time.

Of course, many of these wheel speed settings lead to qualitatively similar
outcomes. The robot will go forward, backwards, turn left or right or not move
at all. We can examine the robot’s behavior and categorize its actions because we
have already categorized these continuous domains into discrete chunks. How-
ever, providing a robot with knowledge of our categories by hand-coding primi-
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tive actions and states is tedious, error prone, and must be tuned to each partic-
ular model of robot. Lastly, since the robot’s sensing and effecting abilities are
not equivalent to our own, we may be unable to provide distinctions which are
optimally effective for the robot as it attempts to interact with and control its
environment.

The problem of learning action models for the purpose of planning is studied
in a variety of forms. Much of this work focuses on simulated domains and
assumes discrete state and action spaces and deterministic outcomes of actions
[5,15], though some allows for the possibility of probabilistic outcomes [2,9]. One
notable exception is [11], which describes a method for learning action models
given continuous state and action spaces for a simulated robot with noisy sensors.
Though [16] and others explore the discovery of regimes in time series, their
regimes are approximated by normal distributions and their method does not
address the case where the time series are (at least partially) caused by an agent.

In stochastic domains with continuous states and discrete actions, reinforce-
ment learning methods can learn reactive control policies [7], and recent work
in this area addresses the case in which both the state and action spaces are
continuous [13]. Reinforcement learning has also proven to be effective both in
simulated domains and with physically embodied robots. Our work differs from
these approaches in that the goal is to learn a declarative action model suit-
able for use by symbolic planning algorithms (and other cognitive tasks such as
natural language generation and understanding [10]), not opaque, non-symbolic
policies.

Our representation of outcomes as prototypical time series is based on earlier
work on clustering time series [8]. Several other recent approaches to identifying
qualitatively different regimes in time series data include [1,3,6].

Below, we present a method whereby an unsupervised robotic agent can
learn qualitively distinct regions of the parameters that control its actions. In our
model, the robot begins with a finite number of distinct controllers, each of which
is parameterized over zero or more dimensions. Using our method, a robot will be
able to learn for itself which regions of the parameter spaces of its controllers lead
to what sensory outcomes. These regions can then become the discrete primitive
actions which the robot can use to plan. The layout of the paper is as follows:
we first describe our robotic agent–the Pioneer 1 mobile robot–and the primitive
controllers we created for it; then we describe our method and the experimental
results that validate it. Lastly, we discuss the future work involved in turning
the prototype actions discovered by our algorithm into planning operators.

2 Method

We can view the sensor data collected by the robot as being generated by dis-
tinct activities or processes. For example, a process may involve the robot going
forward, turning to the right, spinning sharply left or doing nothing at all. Our
problem falls into two pieces. The first is to take the set of continuous multivari-
ate time series generated by the robot and discover the distinct activities which
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created it and which activity generated which time series. In essence we want
to discover how many different kinds of things the robot did and which thing
goes with which time series. The second problem is to use this information to
divide the parameter space(s) of the controller(s) that generated each activity
into possibly overlapping regions. These regions build upon the robot’s innate
controllers and we use them to form the robot’s primitive actions.

2.1 Framework

Although the method we propose is quite general, we explicate it in the context
of our experimental work with the Pioneer mobile robot. We provide a robot
with three distinct controllers:

– ΨRL(r, l)–a left-right wheel speed controller. By varying r and l, the robot
sets its right and left wheel speeds.

– Ψ∅–a null controller that sets all the robots effectors to their resting states.
Though perhaps perverse, this ‘controller’ lets the system differentiate action
from inaction.

– ΨOS–a controller designed to seek out and move the robot towards open
space. It does this by rotating to find the direction with the least amount
of sonar clutter, moving in that direction and then orienting towards a ran-
domly chosen heading.

We then let the robot randomly select controllers and parameters and execute
them for a brief time–typically between 10 and 20 seconds. The data recorded
by the robot during each experience is saved along with the controller type
and its parameters, if any. We call the complete set of robot experiences E .
Note that qualitatively distinct controller/parameter settings should generate
trajectories of qualitatively distinct sensor readings as outcomes. For example,
going forward will typically cause the forward facing sonar’s distances to go
down, the sizes of objects in the visual field to grow and the translational velocity
to be positive. Other actions will produce very different readings. The next
section describes how we can learn which of these sensor time series are associated
with the different kinds of activities in which the robot engages.

2.2 Learning Distinctive Outcomes for a Controller

Given E , we search for distinctive outcomes by first uniformly sampling fixed
length subsequences of length L, called L-sequences, from the data. We then
form k clusters from the L-sequences via hierarchical agglomerative clustering
using Dynamic Time Warping (DTW) [12] to measure the distance between each
sequence. DTW is a generalization of classical algorithms for comparing discrete
sequences (e.g. minimum string edit distance [4]) to sequences of continuous val-
ues. The k centroids of the clusters found, Ci, partition the space of L-sequences,
with each centroid standing in for all of the L-sequences that are most similar
to it. In effect, the centroids discretize the continuous sensor space and form an
alphabet which can be used to tokenize any other experience.
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We next divide E into two sets for each controller: one set contains experi-
ences that occurred while the controller was running; the other experiences that
occurred while some other controller was running. For each centroid, we can
determine the probability that Ci occurred when the controller was running,
p(Ci|Ψ), and the probability that Ci occurred when the controller was not run-
ning, p(Ci|Ψ). If p(Ci|Ψ) is significantly different from p(Ci|Ψ) then the centroid
is distinctive for Ψ . Centroids that occur more frequently than by chance (under
the null hypothesis that the occurrence does not depend on the controller) are
called positively distinctive centroids for Ψ and are denoted by Ψ(Ci)+. Centroids
that occur less frequently are negatively distinctive centroids and are denoted by
Ψ(Ci)−. Centroids which are neither positively nor negatively distinctive are said
to be neutral with respect to the controller. As positively distinctive centroids
occur more often in the presence of Ψ , we infer that Ψ causes them: that the
sensor trajectories similar to Ψ(Ci)+ are the outcomes of running Ψ . Typically,
the inference that a causes b requires that a and b covary, that a occurs before
b and that other potential causes of b are controlled [14]. As our method does
not account for the last item, some of the causal inductions will be incorrect and
further effort will need to go into resolving them.

2.3 From Distinctive Outcomes to Distinctive Actions

For each centroid in Ψ(Ci)+, we examine the experiences in E and see if the
centroid occurs more frequently than by chance. We accomplish this by com-
paring the number of occurrences of L-sequences similar to the centroid in the
experience to that expected given the overall population density of the centroid
in E . If Ci occurs frequently in an experience, then we say that the experience is
distinctive for the centroid. The set of distinctive experiences for each centroid is
ECi . We will denote the parameters of the distinctive experiences for a centroid
as PCi

. We can plot PCi
for each controller colored by the centroid. For example,

figure 1 shows one particular division of ΨRL’s parameter space. This plot shows
left and right wheel speed parameters associated with data collected from the
Pioneer-1 while running ΨRL. Each of these robot experiences is labeled with
one of six distinctive centroids. For example, the experiences labeled with the
small x’s all have wheel speeds that are generally below zero. The center portion
of the plot is empty because our method did not find any distinctive outcomes
for these experiences. Notice that each of the prototypical centroids is associated
with a subset of the entire parameter space and that the subsets appear to be
well separated.

In general, there are several possible outcomes for the distributions of con-
troller parameters derived from individual centroids Ci and from pairs of cen-
troids Cj and Ck. We first list the possibilities and then provide intuitions for
their meanings:

1. PCi
has a uniform distribution across the entire parameter space.

2. PCi
has a non-uniform distribution–some parameter values lead to Ci more

frequently than others. This distribution may be uni-modal, bimodal or more
complex.
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Fig. 1. Scatter-plot of Left and Right wheel velocities labeled by their centroid or
distinctive outcome.

3. PCj
and PCk

are well separated (note that this can only occur if the indi-
vidual distributions are non-uniform to begin with).

4. PCj and PCk
overlap significantly.

We will formalize these notions below but the intuitions should be clear. In the
concrete terms of ΨRL(r, l), item 1 indicates that although the outcome occurs
more frequently when ΨRL is running, it does not depend on the parameters of
ΨRL. Item 2 indicates that the occurrence of the centroid depends on r and l. If
the distribution is uni-modal, then only one range of r and l leads to this out-
come; if it is more complex, then two or more ranges lead to it. This corresponds
to a different regions of the parameter space having the same outcome.

Items 3 and 4 both require that the outcomes Cj and Ck depend on the choice
of r and l. If the parameter ranges for the two outcomes overlap significantly, then
this corresponds to a single action leading to two (or more) different outcomes.
This may be due to the context in which the two action occurs.

2.4 Knowing When an Action Is Discrete

Given a distribution PCi , we must ask whether it is significantly different from
that expected by random chance. We can divide the parameter space of a con-
troller into uniform cells and create a histogram of the number of occurrences of
PCi

in a cell. We can create a similar histogram of the total number of experiences
with parameters in a cell regardless of centroid. We can use these histograms
to form a discrete probability distribution of the probability that a given range
of parameters leads to the distinctive outcome (Ci). The null hypothesis is that
the parameter values have no effect on the outcomes and that the distribution
obtained from PCi

is uniform. We can test H0 for each Ci by building a sam-
pling distribution of the Kullback-Leibler distances between randomly generated
distributions of the number of experiences containing Ci. elements and the true
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uniform distribution. The discrete Kullback-Leibler distance or average variance
measures how much one probability distribution differs from another:

d(p1, p2) = −
∑

x

p1(x)ln
p1(x)
p2(x)

Once we have obtained the distribution of the distance measures, we can use
randomization testing to see if the actual distribution derived from PCi

is sig-
nificant.

If PCi
is significantly different from the non-uniform distribution, then we

can use randomization testing again on each of the cells in the distribution. In
this case, we build the sampling distribution for the cells of the histogram using
the Kullback-Leibler distance of the probability value in each cell as compared
to the uniform probability distribution. We then look for cells whose Kullback-
Leibler score is significantly different from that expected under H0. These cells
are the ones who contribute highly to PCi

’s significance. They define the discrete
action which leads to outcome Ci.

2.5 Summary of the Method

In summary, our method is as follows. Given a set of parameterized controllers
for a mobile robot and a set of sensors:

1. Randomly select a controller and run it with randomly selected parameters.
While it is running, record the data that it generates and save this along
with the type of controller and its parameter values.

2. Sample fixed length subsequences uniformly from the data generated and
form clusters.

3. For each cluster centroid, Ci, and controller, Ψ , determine if the probability of
the centroid occurring while Ψ is running, p(Ci|Ψ), differs significantly from
the probability of the centroid occurring while Ψ is not running, p(Ci|Ψ).

4. Determine the distinctive experiences for each of Ψ ’s positively distinctive
centroids. Use these to create probability distributions for PCi

, the parame-
ters of the experiences that lead to outcome Ci.

5. Use randomization testing and the discrete Kullback-Leibler distance to find
centroids that are dependent on the parameters of Ψ and the regions of the
parameter-space that lead to the centroid.

The regions found are ranges of parameter values that typically result in specific
outcomes of sensory trajectories. They are candidates for primitive actions of
the mobile robot.

3 Experiment

3.1 Method

We collected 120 experiences using ΨRL(r, l) (96-experiences), Ψ∅ (12-
experiences) and ΨOS (12-experiences). The distribution was weighted towards
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ΨRL as this controller was the focus of our experiment. The r and l parameters
for ΨRL were uniformly sampled between -100 and 200 so as to obtain more
forward-moving experiences than backward-moving experiences. The robot op-
erated in a convex space containing numerous small objects with which it could
interact. Intervention was required once during the data collection when the
robot became stuck on power conduit lines attached to one of the walls of the
space.

In the analysis that follows we used the following subset of sensors: heading,
right-wheel-velocity, left-wheel-velocity, translational-velocity and rotational-
velocity. The Pioneer keeps track of its heading and assumed position by dead
reckoning. It determines its right and left wheel velocities, translational and rota-
tional velocities via proprioceptive feedback from its wheel encoders. The values
of its sensors are recorded every 10-milliseconds.

3.2 Results

The algorithm described above found several statistically significant (p < 0.01)
regions of the parameter space of ΨRL(r, l) including ones that we would label
roughly as “forward”, “backwards”, “hard-left”, “slow-left” and so forth. Figure
2 below demonstrates several probability distributions linking particular setting
of left and right wheel speeds and their distinctive outcomes (Ci). In this exper-
iment, each distribution was decidedly non-uniform (corresponding to item 2 in
the taxonomy above) and demarcated a single contiguous region of the param-
eter space. The regions are relatively large, however, and several overlap each
other. Our assumption is that this is due in part to the small size of our data set
and in part to the fact that different actions can result in the same qualitative
outcome. Further experiments are underway to clarify this.

Each plot in figure 2 shows the action associated with a particular distinctive
outcome. These plots are based on clusters of the data from the original 120-
trials. The darker cells of each plot indicate the range of parameters that define
the action. The first plot shows the action defined by high values of left and
right wheel speeds and with the right wheel speed generally higher than the
left wheel speed–with what we would label forward motion and turning to the
right. Investigation of the distinctive centroid associated with the plot confirms
this interpretation. The second plot shows actions with right wheel speeds below
zero and the third shows actions with high left wheel velocities and low right
wheel velocities. We might label these activities as “backwards to the left” and
“forward left turn” respectively. Of course, each atomic action discovered by our
method ranges over a large portion of the controller’s parameter space. This is
due in part to the limited amount of data collected and in part to the noisy
environment in which the robot runs. We expect that additional data would
allow the atomic actions to become more precise.

We have shown that our method allows an unsupervised mobile robot to in-
teract with its environment and learn discrete actions over the parameter spaces
of its controllers.
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Fig. 2. Examples of discrete actions associated with different distinctive outcomes.
They corresponds roughly to “going forward”; “going backwards or turning left”; and
“turning to the left”.
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4 Future Work

Future work will remove a number of limitations of the current method. In par-
ticular, rather than representing outcomes of actions as fixed-length prototypes,
we will apply the algorithm described in [8] to identify and represent outcomes
of variable duration. Also, having identified discrete actions and their outcomes,
it becomes possible to go back to the time series data and search for features
of the environment that condition the outcome probabilities. In terms of classi-
cal planning operators, we will identify preconditions. Another limitation of the
current method is that sensor groups are pre-specified. Ideally, the robot would
determine which sets of sensors should be grouped together because patterns
in those sensors capture outcomes of invoking actions. We plan to explore the
utility of a simple generate and test paradigm to this problem, with the test
phase involving statistical hypothesis tests of the form previously described. An-
other extension to this method would be to apply active learning techniques by
letting the robot choose its parameters rather than selecting them at random.
Finally, the current algorithm runs only in batch. We intend to move towards
a completely online implementation whereby the robot will continuously find,
test and improve its prototypical actions. Further work also needs to be done
to investigate the scalability of our approach and to deal with non-stationary
time series. Indeed, as the robot’s learning will modify its interactions, we are
prima facie in a non-stationary environment. We have hopes that the continuous
on-line version will help to shed light on this developmental problem.
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Abstract. This paper describes the user interface design and evaluation
of TransType, a system that watches over the user as he or she types a
translation and repeatedly suggests completions for the text already en-
tered. We show that this innovative approach to a translation tool, both
unobtrusive and very useful, can be very productive for the translators.

1 Introduction

TransType is a project set up to explore an appealing solution to the problem of
using Interactive Machine Translation (IMT) as a tool for professional or other
highly-skilled translators. IMT first appeared as part of Kay’s MIND system
[6], where the user’s role was to help the computer analyze the source text by
answering questions about word sense, ellipsis, phrasal attachments, etc. Most
later work on IMT, such as Brown [2], has followed in this vein, concentrating on
improving the question/answer process by having less questions, more friendly
ones, etc. Despite progress in these endeavors, systems of this sort are generally
unsuitable as tools for skilled translators because the user serves only as an
advisor, with the MT components keeping the overall control over the translation
process.

TransType originated from the conviction that a better approach to IMT
for competent translators would be to shift the focus of interaction from the
meaning of the source text to the form of the target text. This would relieve the
translator of the burden of having to provide explicit analyses of the source text
and allow him to translate naturally, assisted by the machine whenever possible.
In this approach, a translation emerges from a series of alternating contributions
by human and machine. In all cases, the translator remains directly in control of
the process: the machine must work within the constraints implicit in the user’s
contributions, and he or she is free to accept, modify, or completely ignore its
proposals.

The core of TransType is a completion engine which comprises two main
parts: an evaluator which assigns probabilistic scores to completion hypotheses
and a generator which uses the evaluation function to select the best candidate
for completion. The evaluator is a function p(t|t′, s) which assigns to each target-
text unit t an estimate of its probability given a source text s and the tokens
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t′ which precede t in the current translation of s. We use a linear combination
of separate predictions from a language model p(t|t′) and a translation model
p(t|s). Our linear combination model is fully described in [8] but can be seen as
follows:

p(t|t′, s) = p(t|t′) λ(Θ(t′, s))
︸ ︷︷ ︸

language

+ p(t|s) [1 − λ(Θ(t′, s))]
︸ ︷︷ ︸

translation

where λ(Θ(t′, s)) ∈ [0, 1] are context-dependent interpolation coefficients.
Θ(t′, s) stands for any function which maps t′,s into a set of equivalence classes.
Intuitively, λ(Θ(t′, s)) should be high when s is more informative than t′ and
low otherwise. For example, the translation model could have a higher weight
at the start of sentence but the contribution of the language model can become
more important in the middle or the end of the sentence.

The language model is an interpolated trigram [5] trained on the Hansard cor-
pus (about 50 million words), with 75% of the corpus used for relative-frequency
parameter estimates, and 25% used to reestimate interpolation coefficients.

Our translation model is a slight modification of an IBM model 2 [1] in
which we account for invariant entities such as English forms that almost in-
variably translate into French either verbatim or after having undergone a pre-
dictable transformation e.g. numbers or dates. These forms are very frequent in
the Hansard corpus.

TransType is a specialized text editor with a non intrusive embedded Ma-
chine translation engine as one of its components. In this project we had to
address the following problems: how to interact with the user and how to find
appropriate multi-word units for suggestions that can be computed in real time.
The former has been described by Langlais [9] but this article focuses on the
latter.

2 The TransType Model

2.1 User Viewpoint

Our interactive translation system is illustrated in figure 1 for an English to
French translation. It works as follows: a translator selects a sentence and be-
gins typing its translation. After each character typed by the translator, the
system displays a proposed completion, which may either be accepted using a
special key or rejected by continuing to type. This interface is simple and its
performance may be measured by the proportion of characters or keystrokes
saved while typing a translation. Throughout this process, TransType must
continually adapt its suggestions to the translator’s input. This differs from the
usual machine translation set-ups where it is the machine that produces the first
draft which then has to be corrected by the translator.

TransType mode of interaction requires a synchronization between the user
interface module and the translation engine in order to maintain a coherent state:
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Fig. 1. Example of an interaction in TransType with the source text in the top half
of the screen. The target text is typed in the bottom half with suggestions given by
the menu at the insertion point. Unlike the version used in the evaluation, the current
prototype which offers unit completion is illustrated here.

the translation engine must be aware of the sentence the translator is working on
and continuously keep track of the part of the sentence that precedes the cursor.
The synchronization must always be kept even in the case of cursor movements
with the mouse or in the case of cut and paste operations.

3 Development of the User Interface Elements

A major part of the TransType project went into the design of a real-time
translation engine fast enough to respond after each action of the user. This
work was first described by Foster [4] and was implemented with a rudimentary
line-oriented interface. The user was presented suggestions one at a time and
control keys were used to cycle through them and to select one. This prototype
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showed the feasibility of the underlying translation engine but was not really
“usable” by translators.

We then defined the following objectives for a better user-interface:

– hide the inner workings of the translation engine
– provide an adequate display for the user showing both the source text and

appropriate suggestions
– embed the engine in a more convenient and intuitive text editor similar to

the usual working environment of a translator.

We developed a first version of the editor in order to find the best way to dis-
play the text and the suggestions: we tried to display the text and its translation
side by side but it seems that a synchronized display of the original text and its
translation one over the other is better; we also tried displaying suggestions in
a separate window but we finally chose the set-up shown in Figure 1 where the
seven best suggestions are shown as a floating menu positioned at the cursor. In
the first version, editing was limited at going from left to right. The only way to
correct what had been typed was by hitting the backspace key. This reflected the
left to right working of the translation engine. But we quickly saw that this was
too rigid (users could not even move the cursor with the arrow keys) and that
the results would not be meaningful. Even though, our goal was only to prove
the feasibility of our translation engine, we found that these interface limitations
would hide the usefulness of TransType to the translators.

So we decided to invest more time in a translator friendlier interface that
allows a free movement of the cursor either with the mouse or arrow keys. We
also allowed all usual editing such as cut and paste of arbitrary selections of text.
This implied a synchronization mechanism between the user interface and the
translation engine of TransType in order to follow these cursor movements and
to update in real-time the context of the engine. We also added easier means
of dealing with suggestions which can either be cycled through using PageUp
or PageDown keys; the current element of the menu always appear at the same
level of the text to ease reading and can be accepted using either the Tab or the
Return key. A user can also click directly any suggestion of the menu using the
mouse.

User preferences can tailor some aspects of the interface dealing with:

– relevance of suggestions: mixing coefficients of the language and translation
models, minimal score for a suggestion to be given;

– number of suggestions displayed, prefix length before a suggestion is made
(currently 0) and the minimum number of letters that a suggestion must
have before being shown.

We have not done a systematic comparison of all these parameters but we
chose a set of what seemed to be the most adequate settings for the purpose of
our evaluation if this tool really supported a more productive way of producing
translations.
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This interface was implemented using a text widget in Tcl/Tk linked with
our translation engine written in C++. The text widget is limited to the edi-
tion of plain character files and thus is not a full featured text editor such as
Microsoft Word which allows for formatting of characters using bold and italics,
for paragraph indenting and centering and for creating figures and tables.

As we wanted to only test the speed of typing translations of isolated sen-
tences, we did not need a full text processor but one that we could customize.
We instrumented the interface to keep track in a file of all user actions. This file
was then analyzed off-line to deduce measurements about the behavior of the
user.

4 User-Interface Evaluation

We first defined a theoretical evaluation of TransType on a word completion
task, which assumes that a translator carefully observes each completion pro-
posed by the system and accepts it as soon as it is correct. Under these optimistic
conditions, we have shown that TransType allows for the production of a trans-
lation typing less than a third of its characters, see Langlais et al [11] for more
details.

The goal of the evaluation was two-fold: first to see if this behavior of a
hypothetical user is similar to the one of a human translator while composing
a translation; second to gauge if TransType could help in other ways such
as giving ideas for translations for terms for which there is some hesitation. As
the suggestions of TransType are correctly spelled, their selection insures that
there are less misspellings; this is particularly useful for completed proper nouns
or numbers which must always be carefully transcribed and are often error prone.

4.1 User Protocol

We asked ten translators with various work years of experience and areas of
expertise, to try TransType in a controlled setting. We took for granted that
the translations were correct because we wanted to evaluate our system and
not the translators themselves. All translators were given the same sentences to
translate; these sentences were chosen arbitrarily from our corpus.

The protocol consisted of three steps:

1. 6 minutes without TransType to reassure the translators that our text
editor was quite conventional for typing texts: the usual keys for deletion,
motion, cutting and pasting are present. There is no provision for formatting
though. This step measures the “natural” typing speed of each translator,
i.e. their speed of thinking and typing a translation in our text editor but
without TransType activated.

2. 25 minutes with TransType in which the user types a translation while
being able to select suggestions given by the system. At about the middle of
the experiment, we stopped and gave the translator some advice on trying
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an alternate way of using TransType in order to make a better use of the
facilities of the system. We soon realized that this intervention was more of
an annoyance than a help but we kept it in order to have comparable results.

3. 6 minutes with longer suggestions that were inspired by the work of
Langé [7], we wanted to check if some longer suggestions that we called
briskels (bricks and skeletons) could be useful. Briskels were presented to
the user as soon as a user selected a sentence. The briskels were determined
by hand for the sentences of our experiment but Langlais [10] has shown
that is possible to automatically compute units longer than one word.

Table 1. Number of characters typed, automatically by accepting the suggestions of
TransType, erased, the number of acceptations and the number of characters finally
present in the text produced at Step 2 of our protocol. The last column shows the
proportion of characters manually typed over the number of characters in the final
text. The last line indicates the mean.

typed auto erased accept. final % typed
1 223 748 33 117 938 40%
2 578 1469 118 238 1929 48%
3 281 746 64 129 963 49%
4 887 985 124 152 1748 67%
5 817 1446 143 228 2120 56%
6 189 505 92 82 602 60%
7 669 885 85 151 1469 62%
8 588 820 201 119 1207 75%
9 222 962 93 166 1091 44%

10 405 1156 155 198 1406 54%
486 972 111 158 1347 55%

5 Results

5.1 Comparison with the Theoretical Evaluation

As we have discussed in section 3, the theoretical gain in the number of keys
saved using TransType is about 0.45 if a user does not change his mind once
something has been typed, does not move the cursor with the mouse and does
not erase whole words or parts of the text.

Table 1 shows the number of characters that were typed during step 2 of
the protocol. We observe that on average a translation can be obtained by typ-
ing only about a third for the characters. This figure roughly agrees with our
theoretical user performance which had been used in developing our translation
engine.

The number of suggestions that were accepted was quite high which shows
the usefulness of TransType.
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5.2 Productivity

We define productivity as the ratio of the number of characters in the final
text over the time it took to produce the text. Interviews with the translators
had shown that almost all of them thought that TransType had improved
their productivity. Unfortunately Table 2 on the left does not corroborate this
favorable impression because on the average raw productivity went down by
35%!

Table 2. Table on the left gives the raw productivity of the translators at each step of
the protocol; Table on the right gives the corrected productivity rate not taking into
account inactivity periods. The last line indicates the mean for all translators.

Step 1 Step 2 Gain Step 3 Gain
1 67.2 54.9 -18 % 83.7 25 %
2 143.9 85.0 -41 % 102.4 -29 %
3 79.3 60.0 -24 % 89.3 13 %
4 87.7 86.5 -1 % 98.5 12 %
5 131.9 92.6 -30 % 90.4 -32 %
6 70.0 34.9 -50 % 38.2 -45 %
7 141.7 84.3 -40 % 131.1 -7 %
8 116.8 45.9 -61 % 79.3 -32 %
9 77.1 46.4 -40 % 63.7 -17 %

10 101.6 58.5 -42 % 69.4 -32 %
101.7 64.9 -35 % 84.6 -14 %

Step 1 Step 2 Gain Step 3 Gain
1 123.4 128.4 4.1 & 194.0 57%
2 155.6 112.8 -28 % 137.2 -12%
3 118.0 107.7 -8.7 % 147.2 25%
4 138.6 189.4 37 % 221.8 60%
5 148.1 127.5 -14 % 145.1 -2%
6 115.5 105.4 -8.7 % 84.0 -27%
7 156.9 127 -19 % 193.6 23%
8 156.0 126.4 -19 % 185.9 19%
9 138.5 188.9 36 % 163.5 18%

10 131.3 97.1 -26 % 153.5 17%
138.2 131.1 -5 % 162,6 17%

This can be attributed to the learning process involved in using a new tool:
some users did not hit the right keys to accept the suggestion, stopped for some
periods or were stunned by some suggestions given by TransType. Interest-
ingly enough, translator 4 who managed to get the most out of TransType
used mainly the mouse to enter the translation. This means that the right sug-
gestions almost always appeared in the menu. Some translators would have liked
to temporarily deactivate TransType for reformulating some sentences that
seemed to have “gone on the wrong track”. We did not want to burden our
voluntary translators for more than an hour although some of them would have
liked to bring TransType home to use it regularly.

In order to partially take into account some of these factors we removed all
inactivity periods of more than five seconds from the productivity computation.
After these corrections, we see (Table 2 on right) that three translators managed
to improve their productivity in step 2. But in step 3 where larger suggestions
(briskels) were proposed, then 7 translators managed to improve their productiv-
ity. This prompted us to develop further work in computing longer suggestions
than only one word [10].
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5.3 Saved Effort

Another useful measure is the effort saved by TransType in producing a trans-
lation. Effort is defined as the number of actions (key press and mouse clicks)
done in a unit of time. An ideal tool would increase productivity while redirecting
the effort by inserting more characters with the least number of actions.

Figure 2 shows the relation between the effort and productivity at each step of
our protocol. The diagonal corresponds to a ratio of one action for each character
and would be observed by a translator who would type correctly all the text on
the first try. This line roughly corresponds to the underlying assumption made
in the theoretical evaluation.

retrouver graphique

action /min

character / min

stage 1

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160

stage 2a

stage 2b

stage 3

Fig. 2. Productivity versus effort of each subject over each stage of the protocol. The
x-axis indicates the productivity, that is: the number of characters produced by unit
of time (here a minute). The y-axis (the effort) indicates the number of keystrokes (or
mouse clicks) produced on average each minute.

We see that actions of Step 1 of the protocol are over the diagonal and that
the points of steps 2 and 3 are under the diagonal which means that each action
produced more than one character.

We define efficiency as the ratio of productivity over effort. For example, an
efficiency of 0.6 means that a user only produces 60 characters for 100 actions.
Table 5.3 shows that the efficiency for all translators increases with each step of
use of TransType.

5.4 Qualitative Evaluation

All our testers (except one) were enthusiastic about this concept of translation
typing tool even though our prototype was far from being perfect. They liked
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Table 3. Average productivity, effort and efficiency of all subjects for each stage of
the protocol.

stage productivity effort efficiency
1 102.1 139.1 0.7
2 72.4 56.4 1.3
3 91.1 47.0 1.9

the idea that they could work at their own pace either accepting or ignoring
TransType suggestions, contrarily to other translating tools that are always
there even when they are not needed. The translators appreciated the fact that
they did not have to check for the correct spellings of suggestions. Most of them
were confident that with time they would become more proficient at making a
better use of TransType.

The translators had more mixed feelings about the influence of TransType
on the literary quality of their translations: some were under the impression that
TransType induced a literal mode of translation. But they also noticed that
it could have a positive effect because TransType allowed them to easily get
the “long formulation” of a translation in cases where they would probably have
typed an abbreviated form.

Translators also liked the idea of “false briskels” because they are long sug-
gestions. But as it takes more effort to read them, it is often not easy to think
about them at the right moment. This reinforces the idea that longer suggestions
that would pop up at the appropriate moment would be very useful. We plan
on evaluating this aspect later. More details about this evaluation are given by
Sauvé [12].

6 Related Work

It is hard to compare TransType with other systems because it is unique thanks
to the statistical translation engine that drives it.

Although the style of text prediction proposed in TransType is novel, there
are numerous precedents for text prediction in a unilingual setting. Many pro-
grams such as GNU Emacs and tcsh offer built-in word or command completion
features, and word-completion add-ons are also available for standard word pro-
cessing environments. For example the “small floating yellow windows” that
Microsoft Word pops up when a prefix of a unique known word in a special table
is recognized. In this case, the strings to be suggested were determined either
when Word was compiled or they were painstakingly added by the user. Word
only suggests one possibility while TransType determines many suggestions at
run-time depending on the contexts of both the target and the source texts.

Dynamic completions also occur in the field of alternative and augmentative
communication (AAC), which deals with communication aids for the disabled
such as the Reactive Keyboard [3]. The system then tries to guess what the
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user wants to type next. In this case, the suggestions or choices only depend on
what has already been typed. In TransType, it is possible to vary the relative
contributions of both the language and translation models; so in principle, we
could set it up so that only the language model is used but we have not done
any experiment with this.

Translation memories such as the one implemented in the Translator’s work-
bench of Trados [13] also address the problem of speeding up the typing of trans-
lations. A translation memory is an interface to a database of pairs of sentences
and their associated translations. Within a text editor, the translation mem-
ory manager first checks if the current sentence can be found in the database
of previous translations and if so, it proposes its previous translation that can
either be accepted or modified by the translator. This environment can be quite
efficient in the case of repetitive texts or for revisions of already translated texts.
Although some “fuzzy matches” are allowed for finding close enough sentences
(for example sentences can vary by dates or numbers) this approach is not as
flexible as the dynamic suggestions of TransType. Another drawback is the
fact that once a user operates in the context of a translation memory, it is often
awkward to stop it from proposing new sentences even if they are not relevant
or to go around them. TransType on the other side is a silent helper whose
suggestions can be quietly ignored when the translator already knows what is to
be typed.

7 Conclusion

Although some drawbacks have been identified, this user evaluation was very
useful to show the interest of the innovative TransType concept in a real
setting. It is thus possible to develop computer aided translation tools that can
help to improve the efficiency of translators who are more and more in demand
in the new global economy.
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Abstract. There are two main techniques used to capture an individual’s per-
sonal preferences in order to make recommendations to them about various
items of interest: feature-based and clique-based.  In this paper we present an
approach that can use either technique or a hybrid of the two.  Features are cap-
tured in the granularity knowledge formalism, giving the feature-based approach
more representational power than in most systems. But, the most novel feature
of the approach is its ability to use a hybrid technique, which aims to combine
the advantages of both feature-based and clique-based approaches while mini-
mising the disadvantages.  The hybrid technique also allows for the construction
of a personalised explanation to accompany the recommendation.  A prototype
for the movie domain, MovieMagician, has been developed.  A formative
evaluation of this prototype has been undertaken in all of its modes: feature-
based, clique-based, and hybrid.  Other evidence of effectiveness has also been
gathered.

1  Introduction

The glut of unorganised information on the Web has led to the advent of commercial
services such as Alta Vista and Lycos, using information filtering (IF) and information
retrieval (IR) techniques to help a user satisfy short term information needs (Steinberg
1996).  The need to satisfy long term information needs has initiated the appearance of
systems to model a user’s preferences and recommend items of interest to the user.
Such systems have been called recommender systems (Resnick & Varian 1997).  Ap-
plication domains have included recommending movies, music, books, online news
articles, web pages, and even mates. Our work investigates the development of a per-
sonal preference system called MovieMagician, designed for the movie domain.

Recommender systems draw their techniques from many sources, including IR/IF,
intelligent agents, and expert systems.  The most common approach is clique-based
filtering, also called collaborative filtering (Goldberg et al. 1992) or social information
filtering (Shardanand & Maes 1995) by the IR/IF community.  Clique-based filtering
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uses a group of similar-minded people as indicators of a user’s interests.  The other
approach is feature-based filtering, also termed content-based filtering (Oard 1997).
The presence of preferred (or disliked) features in a new item can be used to form a
judgement of whether the user will like or dislike it.

An advantage of the clique-based approach is that it doesn’t require data about the
item or the extraction of features from the data.  A disadvantage is that there is no way
to construct a recommendation for an item just introduced to the system and not rated
by any users.  Moreover, the coverage of ratings may be sparse if the user base is
small, resulting in an insubstantial or inappropriate clique, and the method is slow to
adapt to changing user goals or to respond to fine-grained preference distinctions.
Finally, as Pennock et al (2000) have shown, there may be theoretical limits on finding
optimal preference combinations, at least without using other information.  The fea-
ture-based approach has no problems with the size of the user base and it can take
advantage of empirically proven IR techniques. However, it can have severe disad-
vantages.  Frequently, only a shallow analysis of the content is possible.  Also, feature
identification procedures must often deal with natural language issues within the text
(for example recognising synonyms or disambiguating multiple meanings).

The recommender system we have developed can use either feature-based or
clique-based techniques, but can also use a hybrid of the two approaches.  Such a
hybrid encapsulates the intuition that you receive better advice about item m from
people who share your tastes about items similar to m in style and content. For exam-
ple if you like action movies, you will be more likely to listen to advice on whether to
see a new action movie from somebody who likes that kind of movie than from some-
body who doesn’t.  A proof of concept prototype system for the movie domain, Mov-
ieMagician, has been implemented.  A formative evaluation, aimed at comparing the
three approaches, and especially at giving insight into the power and useability of the
hybrid approach, has been carried out.

2  A Hybrid Model

The methodology behind the incorporation of a hybrid feature-based/clique-based
technique for the prediction of movie ratings can be described with the help of the two
Venn diagrams shown in Figure 1.

Fig. 1. Venn diagrams of model
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Person p is a user who is requesting a movie rating prediction for movie m.  The set
M represents all movies in the system’s library.  M¢ is the subset of movies that are
similar to movie m (in a sense that will be defined shortly).  M¢¢ is the subset of mov-
ies that are similar to m and that person p has seen.  The set U represents the set of all
registered users.  U¢ is the subset of users who have seen the movie m.  U¢¢ is the sub-
set of users who have seen m and who also have seen "all of" or "some of" the similar
movies M¢¢.  Finally, U¢¢¢ is the subset of users who "feel the same as" or "agree with"
p concerning the similar movies M¢¢.

The method used to rate a movie for a user, p, involves selecting a clique of similar
users.  Clique members are deemed to be similar based on previously viewed movies
about which p and the clique feel the same way (based on similar ratings), and which
at the same time are similar to the movie m (based on similar features).  Once this
clique is formed (corresponding to U¢¢¢), the rating of each clique member for the
movie m can be used to form a predicted rating for p.  This method creates relativistic
cliques, that is cliques of people who feel the same way as p relative to movies similar
to m (even though they may feel quite differently about other kinds of movies).

This hybridisation of feature-based and clique-based methods has the potential to
realise the advantages of both.  The features of the movies can be used to relativise the
cliques, filter out irrelevant movies, allow categorisations of types of movies, annotate
preferences about various features, and generate explanations for a movie. Using
cliques, the subjective judgement of humans is naturally factored into the recommen-
dation process.  Also, cliques allow a holistic view of the movies to be captured, based
upon the opinions of other human beings, whose ability to understand a movie as a
"whole" cannot be replicated by today’s AI systems.

2.1  Capturing and Using Features

The features of a movie are captured in a granularity hierarchy (McCalla et. al 1992),
used extensively in intelligent tutoring systems and more recently information filtering
(McCalla et al, 1996) and software engineering applications (Palthepu et al 1997).
Granularity allows the representation and recognition of domain knowledge and con-
cepts at many levels of detail (or grain sizes) along the two orthogonal dimensions of
aggregation and abstraction.  In the movie domain, standard features of movies (genre,
actors, directors, etc.) are represented in a generic granularity hierarchy that is inde-
pendent of a particular movie.  A simple version of a generic hierarchy can be seen in
Figure 2.  S-objects, denoted by rectangles in Figure 2, are the primary objects in a
granularity hierarchy and represent high-level conceptual knowledge.  S-objects are
allowed to have child objects connected along either or both the aggregation and ab-
straction dimensions.  Observers, denoted in Figure 2 by ovals, are active objects that
perceive features of the domain (in this case looking through a database of movie
information for particular features of relevance to each observer).  They thus act as the
interface between the representation scheme and the real world.  Any specific movie is
an instantiation of this hierarchy.  Each individual movie has a different instantiation
hierarchy and thus is uniquely defined.  However, the degree to which the instantiation
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hierarchies of two movies overlap also defines their similarity, an important aspect of
granularity for our purposes, as discussed below.

The instantiation process is carried out automatically, using the recognition engine
that is part of the granularity-based reasoning system.  Instantiation takes observed
characteristics of the movie and propagates this recognition through relevant portions
of the hierarchy.  Characteristics are observed from a database of movie information,
such as the Internet Movie Database (IMDb), which provides detailed information
about thousands of movies.  The result is a library of instantiated hierarchies.

 Similarity between two movies is determined by the degree of overlap between
their instantiation hierarchies.  This process is comparable to the techniques used in
case-based reasoning for information retrieval based on the knowledge of similar
cases, where a new problem is solved by finding similar cases and reusing them in the
new problem situation (Daniels & Rissland 1995).  An instantiated hierarchy will thus
be called a case and the collection of such cases will be deemed a case library.  The
subset M’ of similar movies for any movie m need be constructed only once, at the
time m is instantiated and added to the library.  It is saved as a similarity list.

Action
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Comedy

Parody Satire

dramaaction

parody satire

comedy

Actors

Director

Plot

Ending
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director

abstraction dimension

aggregation dimension

s-object

observer

Fig. 2. A sample generic granularity hierarchy for the movie domain

2.2  User Interaction

The more the system knows about a user, the better it should perform.  Following this
idea, it is desirable to have a new user rate as many previously viewed movies as pos-
sible, and make updates frequently.  A user rates a movie by annotating appropriate
parts of the movie’s instantiation hierarchy, accessible through an interface incorpo-
rated into MovieMagician.  The user must supply an overall rating on a 7-point scale
of +3 ‡  x ‡  -3 corresponding to the terms {Excellent, Very Good, Good, Indifferent,
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Mediocre, Poor, Terrible}.  Using this rating scheme, the user can give an overall
rating for a movie and also rate particular features such as the genre, actors, and plot.
The collection of annotated instantiation hierarchies for movies seen by a user consti-
tute a user model for that user, and is used to refine the feature matching when form-
ing the relativistic cliques.

The case library and user model can be used together to make recommendations re-
garding a particular (unseen) movie for a particular user.  As an example, suppose user
Alice has not seen the movie Pulp Fiction and requests a recommendation.  M¢¢ (the
set of movies similar to Pulp Fiction that have been seen by Alice) is easily found by
comparing the list of movies that Alice has seen with the similarity list for Pulp Fic-
tion, resulting in the list shown in Table 1.  Similarly, it is straightforward to find U¢¢,
the users who have seen Pulp Fiction as well as the other movies in M¢¢.  At this point,
the system can select a clique from U¢¢ using feature matching to find the users who
feel the same about the M¢¢ movies as Alice.  To do this, the annotations for each
movie in M¢¢ are compared for Alice versus each of the U¢¢ users. The matches are
summed for all the movies, and a ranking of the U¢¢ users is produced.  The top ranked
users are selected to form the clique U¢¢¢ (the users who feel the same way about the
similar movies as does Alice).  The annotations for the Overall Rating node are then
averaged across the clique members and presented to Alice as the predicted rating.  In
this example, the results of the similarity matching are listed in Table 1.  Frank, David
and Carol, the highest ranking clique candidates, are chosen as the clique.  The anno-
tation values {-1, 0, -1} of the corresponding movie ratings {"Mediocre", "Indiffer-
ent", "Mediocre"} for the three clique members are averaged, and Alice is presented
with a predicted rating of "Mediocre" (-1) for Pulp Fiction.  This example demon-
strates the ability of the hybrid model to use feature matching to select appropriate
movies and cliques, and clique matching to select an appropriate rating as a prediction.

Table 1. An example of clique selection

M¢¢ for
Pulp Fiction

U¢¢ for
Pulp Fiction

Ranking of
similarity to
Alice

Rating for Pulp Fiction
(annotation values)

1. GoodFellas Bob 5 Excellent (2)
2. Jackie Brown Carol 3 Mediocre (-1)
3. Die Hard David 2 Indifferent (0)
4. Face/Off Earl 4 Good (1)

Frank 1 Mediocre (-1)

It should be noted that there are a huge variety of possibilities for the matching of
users using the feature annotations and "cutoff" heuristics during clique selection.
Numerous matching algorithms were tested to discover the better performing ones.
The experimental results in the next section are based on the best algorithms found.
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3  Experiments and Results

An array of experiments has been carried out to allow an internal comparison of the
feature-based, clique-based, and hybrid models within the MovieMagician framework,
as well as an external comparison of these models to the predictive skills of a profes-
sional movie reviewer, and to an existing online movie recommendation system.  The
results were also compared to the published evaluations of other personal preference
systems in the movie domain.

Two data sets were used to test the predictive ability of MovieMagician: a data set,
collected locally at the University of Saskatchewan; and a data set created from movie
ratings available on-line from the DEC Research Systems Center1.  To create the UofS
data set, 54 test subjects were given access to 562 movies in the case library and were
asked to rate the movies they had seen, providing both an overall rating as well as
annotating features of each of the movies that had impacted them either negatively or
positively.  A total of 8260 ratings were made, with an average of 153 movies per
subject.  There were 306 movies in common between the UofS data set and the movies
available from DEC.  The overall ratings of these 306 movies by 1276 DEC users
formed the DEC data set, containing a total of 24728 movie ratings.  While much
larger than the UofS data set, the DEC data set does not contain user annotations of
specific movie features, only an overall rating of each movie.

In each experiment, a comparison was made between the predicted movie ratings of
the MovieMagician system and the users’ actual ratings.  We used the common infor-
mation retrieval metrics of precision and recall.  In the context of our experimentation,
precision is the percentage of predictions where the actual rating was at least as good
for a liked movie (or conversely, at least as bad for a disliked movie) as the predicted
rating.  Recall is the percentage of the number of movies correctly predicted as "liked"
to the total number of movies "liked".  The final metric used involves calculating the
Pearson correlation coefficient of the predicted ratings and actual ratings of a test
subject.  The results for the internal testing of the feature-based, clique-based, and
hybrid techniques in MovieMagician are shown in Table 2.

Table 2. Summary of experimental results

Technique Data set Precision (%) Recall (%) Correlation
Feature-based UofS 62 72 0.19

UofS 62 62 0.47Clique-based
DEC 68 62 0.61
UofS 63 64 0.40Hybrid
DEC 65 66 0.44

Although it performed more poorly according to the correlation measure, the fea-
ture-based technique, usually considered the underdog to clique-based techniques,

                                                          
1 http://www.research.digital.com/SRC/
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compared favourably to the two other approaches in the UofS data set on precision
and recall measures.  The clique-based and hybrid techniques performed relatively
well, considering the user population was quite small in the UofS data set and the
annotations were only of the movies overall, not specific features, in the DEC data set.
Thus, any of the approaches could be used where appropriate: the feature-based tech-
nique in situations with small user populations but lots of information about the mov-
ies, the clique-based technique in situations with more users but less information about
the movies, and the hybrid technique in any situation.

Moving to the external examination of performance, MovieMagician was compared
to a representative  professional reviewer, Roger Ebert.  MovieMagician outperformed
Ebert (that is, if users simply accepted Ebert’s recommendation without question).
Using the Pearson correlation coefficient, the experiment revealed an average correla-
tion of each user’s actual rating to Ebert’s rating of 0.26 for the UofS data set and 0.28
for the DEC data set.  These values are much lower than those retrieved for any of the
MovieMagician techniques in Table 2.

The final experiment conducted using the test data involved submitting the movie
ratings of a typical test subject to a functional online recommendation system in order
to compare the results with those of MovieMagician.  The system selected for com-
parison was MovieLens2, a clique-based system with tens of thousands of users.  A
total of 100 movie ratings were entered into MovieLens for the test subject.  The re-
sults are shown in Table 3.  MovieMagician, despite its small user and movie base,
compared favourably (sometimes surpassing) MovieLens.

Table 3. Comparison of results using MovieMagician and MovieLens

Methodology Precision (%) Recall (%) Correlation
MovieMagician
Feature-based

61 75 0.36

MovieMagician
Clique-based

74 73 0.58

MovieMagician
Hybrid

73 56 0.51

MovieLens 66 74 0.48

The performance of MovieMagician can also be compared to the performance of
movie recommendation systems reported in the literature.  Alspector et al. (1997),
using a neural net employing feature-based techniques, were able to obtain an average
correlation of 0.38 between the predicted and actual ratings of users. Clique-based
techniques achieved an average correlation of 0.58.  The correlation with a profes-
sional movie reviewer, Leonard Maltin, was found to be 0.31.  These numbers are
comparable to ours, and further support our findings that on the correlation measure,
the clique-based technique performs better than the feature-based technique and a
professional movie reviewer.  Unfortunately, this is the only metric available for com-

                                                          
2http://movielens.umn.edu/
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parison with Alspector et al. (1997).  Another clique-based system, MORSE (Fisk,
1996), obtained exceptional results where 95.28% of the recommendations were found
to be "satisfactory" by the users.  This is very good performance, but this measure
does not directly compare to any of our measures, making it difficult to draw any firm
conclusions about the relative performance of MORSE and MovieMagician.

The hybrid system of Basu et al. (1998) is the closest in both methodology and
measurement to MovieMagician.  Using slightly different measures of precision and
recall, the Basu et al system achieves a precision of 83%, while maintaining a recall of
34%.  These results are impressive, yet when comparing them to MovieMagician we
must consider that a prediction was not made for every movie as in our study, but
instead a list of recommended movies was returned to each user from which the re-
sults were calculated. Their approach placed much emphasis on obtaining a high pre-
cision for each movie returned in the list, at the expense of recall.  Thus, their higher
precision values are counterbalanced by our higher recall values.

So, in all of its external comparisons, MovieMagician performs well, especially
considering its small user and movie base which put both the clique and hybrid ap-
proaches at a disadvantage.  In internal comparisons among the three approaches, we
had expected our hybrid model to clearly perform better than the feature-based and
clique-based methods.  We feel the reasons it does not stand out as definitely superior
stems mostly from restrictions within the experiments rather than any specific short-
coming in the design of the model.

One final capability of MovieMagician, not found in other systems, should be men-
tioned: the ability to automatically generate a (currently still quite crude) personalised
movie review based on the user’s feature preferences extracted from the clique used to
predict the user’s rating of the movie.  An example of such a review is shown in Figure
3.

The MovieMagician feels you will probably like the movie Mrs.
Doubtfire.  Overall, you will likely think it is Very Good.  You
will very likely feel the actor Robin Williams (Daniel Hillard/Mrs.
Doubtfire) is Excellent.  You also will probably feel the realiza-
tion of the genre Comedy is Good.  Finally, you will probably feel
the plot is Good.

Fig. 3. Personalised movie review

4  Related Work

We discuss here research into hybrid techniques.  Alspector et al (1997), while not
building a hybrid system, were the first to formally compare feature-based and clique-
based approaches.  Recently, there have been a number of other hybrid approaches.
Fab (Balabanovic¢ & Shoham 1997) is a system that provides users with personalized
web page recommendations.  In Fab feature-based filtering is used to select web pages
that correspond to the topic designated to a collection agent, and after a user rates a
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page highly, clique-based filtering is used to pass the URL to the user’s nearest neigh-
bours based on the profile maintained by the selection agents.  Basu et al. [1998] also
employ a hybrid technique, where an inductive learning system draws on collaborative
features (such as the set represented by users who like movie m or movies liked by
user u) and content features (the features of the movies such as actor and genre) to
make a recommendation.   PTV (Cotter & Smyth, 2000) is a recent, but widely used
system that produces personalised TV listings for its users. PTV provides the user with
a list combining two types of recommendations: content-based (feature-based), gener-
ated essentially from the program descriptions as mapped to each user’s interests, and
collaborative (clique-based), generated from evaluations provided by other users with
similar overall program preferences.

While all of these systems are hybrids in that they use both feature-based and
clique-based approaches, in none of them are the two approaches integrated in the
sense of MovieMagician, where all the cliques in the hybrid technique are indexed by
feature preferences.  Moreover, in these other systems, features are merely an un-
structured list, as opposed to the more powerful granularity-based representation
scheme in MovieMagician.  Thus, MovieMagician has the potential to capture features
more deeply, and to explore more subtle cliques, relativised by user preferences  ap-
plied to this deep feature representation.

5  Conclusions

Overall, our experiments shed new light on feature-based vs. clique-based techniques
for personal preference systems, and show that there is still promise for feature-based
techniques, both in how well they can perform and in their incorporation into fea-
ture/clique hybrids.  Indeed, we have proposed one such hybrid technique that com-
bines the advantages of both feature-based and clique-based techniques.  The forma-
tive evaluation showed that the hybrid system worked, but not its superiority to other
approaches.  The asymptotic behaviour of the hybrid system as data sets grow larger
will only be possible through widespread web deployment.

The use of granularity-based reasoning in recommender systems is also a contribu-
tion.  The hybrid and feature-based approaches gain much of their power from their
use of a granularity-based representation of features.  In fact, the movie domain is
perhaps not the best domain to show these techniques to their best advantage, since the
representation of the domain makes relatively little use of many of the most powerful
features of granularity.  Text retrieval, for example, may be a richer domain for ex-
ploring the feature-based and hybrid techniques investigated in this paper. McCalla et
al (1996) have already explored the use of granularity for "similarity-based" text re-
trieval; and Woods (2000) shows how a powerful granularity-style subsumption hier-
archies can be used to enhance text retrieval.  Future investigations into building
MovieMagician-style recommender systems for these feature-richer domains would
likely prove profitable
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Abstract. This paper studies an integration of agents and genetic algorithms for
inventory management. It involves multistage planning for distributed business
components. In order to avoid local optimums in a large and multi-level search
space we propose an agent-based management model where agents cooperate
with each other to implement a genetic gender-based algorithm. We introduce
agent gender concept and use it to abstract search levels. Agent gender repre-
sents characteristics of an agent at a time. Based on agent gender maps we can
skip obvious non-optimal generations and therefore reduce planning complexity
and time. This hybrid model also makes distributed units more adaptive to
changes and local requirements and is suitable for E-management.

1   Introduction

Agent-based systems are efficient models for distributed management. They can use
distributed data, support interaction and autonomously adjust to local requirements and
changes. On the other hand, genetic algorithms are known as tools to achieve global
optimization avoiding local optimums. However, agent-based models require coordi-
nation of actions, which could be fairly complicated when the systems are large, and
genetic algorithms require long computation time.

In order to cope with these obstacles while combining agents and genetic algo-
rithms, we propose a hybrid agent-genetic architecture with a special concept called
agent gender. This approach is described through a particular solution for a case study
in inventory management within an E-business environment. The proposed architec-
ture, which takes advantages of the two mentioned AI techniques and the agent gender
concept, breaks down the given management problem into local tasks while satisfying
global requirements thanks to agent teamwork cooperation. This method also increases
the autonomous control of business units and makes the management become more
adaptive to dynamic changes of the business units and of the market.
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In order to test the proposed approach we examine a specific problem in inventory
management, the lot-sizing problem for multistage production [1,4,16]. Nowadays,
business and manufacturing units of modern corporations are decentralized and multi-
stage production is dominating [9]. Inventory planning in these systems is complicated
not only because of the multilevel flow of inventory and products but also because the
data are distributed at different locations and could be changed dynamically while
units are interacting with each other. In order to manage inventory for a company
which spreads over large territories, e-management is essential [3]. However, in e-
management where orders are defined and transmitted electronically and automati-
cally, it is difficult to manage business units so that it coordinates distributed data,
satisfies local requirements and achieves global optimization. This paper proposes a
way to deal with those obstacles by integrating agents, a gender concept, and genetic
algorithms.

The rest of this paper is organized as follows. A case study, inventory planing and
particularly lot-sizing problem in multistage production, is examined in section 2.
Then, we describe the agent-based architecture as a solution for breaking down the
complexity of the given problem in section 3. The combination of this model with
another AI technique: genetic algorithm is proposed, and the agent gender concept,
which helps to reduce search space, is introduced in section 4. Next, we discuss ad-
vantages and disadvantages of the proposed solution compared with the existing ones
in section 5. Finally, conclusions and future work’s direction are given in section 6.

2   Multistage Inventory Planning in E-Management

A multistage production could be described as the following. A company produces Y
products and has X business units which includes: P procurement units; M manufac-
turing units; and S selling units, X=P+M+S. Procurement units are responsible for
buying materials and distribute them to manufacturing units. Selling units are respon-
sible for collecting final products and sell them. A manufacturing unit may use raw
materials or middle products produced by other units. Outputs of a manufacturing unit
could be inputs for the other units. Each unit can participate in producing several
products. All units which involve in producing a product form a product line. We may
have W product lines:{PL1,PL2,..,PLW}. In a product line, the units and their connec-
tions are defined by its product schemata SCHEM(PLi), i=1..W. Hence, the production
structure of a company is represented by:
q The set of business units:

• Procurement: {PU1, PU2, .. , PUP};
• Manufacturing: {MU1, MU2, .. , MUM};
• Selling: {SU1, SU2, .. , SUS}.

q The product line configuration: SCHEM(PL1),SCHEM(PL2), .. , SCHEM(PLW).
Lot-sizing optimization is a key issue in inventory management. In general, this is to
define lot sizes for inventory supplies and movements from one unit to the others so
that it minimizes average-per-period transferring cost and holding cost. This problem
may have various forms[2,9,18]. We will study the following lot-sizing problem:

(1)
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A production structure is given as in (1). Assume that for each unit Ui, i=1..X,
which participates in Wi product lines, we have a set of inputs INPi,k which we will call
local materials, a set of outputs OUTi,k which we will call local products, and a set of
production functions Fi

k, k=1..Wi, which defines the amount of products PROi,k needed
to be produced by the given unit. The unit Ui virtually has its own e-warehouse with Vi

items including local materials and local products of all Wi product lines. The costs for
holding items are defined by functions Gi,k(vi,k), where vi,k is the subtotal items for
product PLk, k=1..Wi. The costs for transferring local products from Ui to the others
are defined by Hi,k(Ri,k,Uj), where Ri,k=OUTi,k, k=1..Wi, and Uj is the destination unit.
Assume that the production process is carried out by a series of time moments: {1,2,
...,T}. Then, in order to satisfy the given production plan we have:
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The lot-sizing problem in this case is to define a schedule of holding and transfer-
ring local materials and products for each of X units. For each time moment t, where
t=1..T, a unit should receive a planed number INPi,k(t) of materials, and produce a
planned number PROi,k (t) of products, and output a planned number of its products
OUTi,k(t) so that the total cost of storing Vi,k(t) and transferring Ri,k(t) was minimized.

In other words, the given problem can be stated as follows:
Given:

• X business units: {PU1, PU2, …, PUP}, {MU1, MU2, …, MUM}, {SU1, SU2, …,
SUS}.

• Production rules described in (2) and production configuration for W product
lines given in: SCHEM(PL1), SCHEM(PL2), .., SCHEM(PLW)             (3)

• Estimated market demands, i.e. the amounts of products that can be sold at S
selling units: OS1(t), OS2(t),…, OSS(t), where t=1..T.  (3)

Requirements:
Define a schedule for holding and transferring products, i.e. define the non-negative
elements of matrix R[1..X][1..X][1..T] for transferring and the non-negative elements
of matrix V[1..X][1..T] for holding for each time moment t, t=1..T, so that:
(*1)     INPi,k ‡  0, and OUTi,k ‡  0, i=1..X, k=1..Wi , when (1),(2), and (3) apply, and

(*2) MIN)R[i][j][t]V[i][t](
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Notice that in order to satisfy (4) we need to calculate and verify (4) for each of W
product lines. Hence, the matrix R has four-dimension (T*X*X*W) and solving this
problem is extremely time-consuming. If elements in matrixes V range in a domain of
Dv values and elements in R range within Dr values and assume that max(Dv,Dr)=Z,
then, the time complexity of the given problem is Z(T*X*X*W) since indeed elements of
matrix V could be defined knowing all elements of R. This is for the simplest case,
without discounts and other trade factors.
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3   Multi-agent Configuration

We propose to use agents in building the production management system in the given
problem to reduce its complexity. In our agent-based model (Fig.1), each agent repre-
sents a business unit Ui , i=1..X, in one product line PLk, k=1..Wi . Thus, if the given
unit Ui participates in Wi product lines it would have Wi agents. Then, in total we
would need N agents to support X units:

å
=

=
X

i
iWN

1

Assume that the given production requirements are defined by (1),(2), and (3). All of
data concerning inputs, output, warehouse, and production of the given unit are stored
locally and are managed by local agents, one per product, instead of being stored and
managed by a centralized center of the company.

The architecture of an agent with its data flow is zoomed-in in Fig.2. Within an
agent Ai , i=1..N, at a time moment t, there is Ci(t) amount of local materials comes in
and there is Ei(t) amount of local product goes out. Each agent has two main compo-
nents: e-warehouse and e-manufacture (Fig.2). The e-warehouse stores IAi(t) amount
of intermediate and OAi(t) amount of a product. The e-manufacture component needs
QAi(t) amount of local materials to produce PAi(t) amount of local product items.
Thus, the initial lot-sizing problem for the whole company is broken down into N
identical and much less complicated sub-problems for single agent as follows.

Given production rules which are described in (1) and the configuration for W
product lines: SCHEM(PL1), SCHEM(PL2), .., SCHEM(PLW), we can define the con-
figuration of the agent-based model for production management as in Fig.1. Then,
knowing the market demands: OS1(t), OS2(t),…, OSS(t), where t=1..T, and the agent
configuration (Fig.2) we can backtrack PAi(t) for each agent Ai, i=1..N, at each time
moment t=1..T. From production functions Fx

k, k=1..Wx for each unit Ux, x=1..X, we
can easily infer the production ratio FAi for each agent Ai, i.e:

        PAi(t)=FAi(QAi(t)) or QAi(t)=FA*i(PAi(t)).

Next, the conditions for satisfying these production requirements for agents can be
described as:
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The requirement for agent lot-sizing is to define Ei(t), i=1..N, t=1..T so that:
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was  minimum.
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Notice that, from Ei(t), i=1..N, t=1..T and using agent configuration (Fig.2) we can
define Ci(t), i=1..N, t=1..T since output of an agent forms input of other agent. Then,
as PAi(t) and QAi(t) are also known, we can recursively define IAi(t) and OAi(t) using
the equations in (5). Thus, we can check (5) and (6) recursively by time and in parallel
by agents. The complexity of lot-sizing problem for each agent is now reduced to
Z(T*N), compared with Z(T*X*X*W) in the standard model. We will estimate the overall
complexity in section 5. In order to solve the lot-sizing problem for each agent, that is
to find a proper set of Ei(t), i=1..N, t=1..T, we build a genetic algorithm and will de-
scribe it in the next section.

This agent-based model (Fig.2) is proposed for the general case. In order to build a
particular team of agents for a specific scenario with a specific priority, for instance
adaptation or real-time constraints, we can use frameworks proposed in [7,15] for
distributed adaptation to dynamic changes, in [17] to address real-time requirements,
in [12] for scheduling, and in [14] for communication between agents. When the data
is known in incomplete forms caused by dynamic and contiguous changes we can use
interval techniques described in [10,13]. In order to test the performance of the agent-
based management, which is proposed in this paper, we need to separate it from the
other techniques. Therefore, we do not use any of the mentioned techniques in the
simulation experiments which are described in section 5.

Fig. 1. Agent-Based Model for Inventory Management. W=Workstations; PC= Personal Com-
puter; S=Server machine. U1-W means Unit 1 runs on a Workstation.
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Fig. 2.   Agent Configuration and its Data Flow.

4    Agent Genetic Gender-Oriented Algorithm

In the proposed agent-based model, the key point is to find a set EA of Ei(t), i=1..N,
t=1..T which satisfies (5) and (6). Recall that Ei(t) is the amount of local products
which should be transferred at the time moment t, from a unit Uk, k ˛ [1..X], which is
partly managed by agent Ai, to some other unit Uh, h ˛ [1..X], which is partly managed
by agent Aj. The connection Ai-Aj can be defined using the given product line configu-
ration, for instance the agent connection A6-A12 from unit U5 to unit U7 (Fig.1). The
matrix  EA then represents a plan or a schedule of inventory transfers and can be de-
picted  as in Fig. 3.a. If Ei(t)=0 that means there should be no transfer from agent Ai at
the time t.

 We use genetic algorithm (GA) to define optimal values of elements in EA so that
we can avoid local optimums, because the search space, whose size is reduced to Z(T*N),
is still very large and has multiple levels. We call this algorithm Agent Genetic Gen-
der-Oriented (AGGOA). Its steps are shown in Fig. 4.

In order to speed up the searching time with GA we build a concept called agent
gender and will use it to abstract search levels. In the given case study agent gender
represents the transfer characteristic of an agent at a time. Instead of generating or
reproducing strings, which represent Ei(t) from EA (Fig.3.a) with Z values for each
digit in the strings, as in standard GA, we first mark a gender from {0,1} for each digit
(Fig.3.b) and then estimate and reproduce strings based on their digit genders rather
than on their values. Anytime when a replenishment is needed for an agent Aj the
gender of the previous agent Ai should be "1", if gender of Ai is "0" that means there
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should not be any transfer at the given time t. Recall that Ai and Aj forms an agent
connection in the agent chain of the given product line.

This modification of GA using the gender concept simplifies the string format and
reduces the complexity of agent local task from Z(T*N) to 2(T*N). Now we can work with
the gender map of string EA, which is an abstract image of a string, rather than the
string itself. Using this abstract notation we can skip obvious non-optimal generations
and therefore reduce planning time.  The gender map G[N,T]={{g1

1, g1

2, …, g1

T},{g2

1,
g2

2,…, g2

T},{gN

1,.., gN

T-1,gN

T}}={0,1,0,0, … 0,0,1,1} has N*T binary digits while the
full-schedule string EA={E1(1), E1(2), .., E1(T), .., EN(1), .., EN(T)} would have
N*T*Log2(Z) binary digits. The full schedule of inventory replenishments EA can be
defined using its gender map G. Notice that the gender map G[N,T]={g1

1,g1

2,..,g1

T,
g2

1,.. g2

T, .., gN

T-1, gN

T} tells us: (i) when (by t, t=1..T) and (ii) where (by i, i=1..N) the
replenishments are made without specifying what is the amount of a replenishment for
each agent. However, this hidden data can be calculated recursively as follows. Start-
ing from time 0, assume that the first "1" in the gender map G is gK

R. This "1" repre-
sents the first transfer of the corresponding agent AK and it can be defined as the sub-
total accumulated amount of local products that the given agent AK has produced from
time 0 to time R. Similarly, we can define the amounts of the first transfers for other
agents by the positions of their first "1"s in each page (Fig.3b) of the gender map G.
After each transfer, products are accumulated again and are passed to the next agent in
the product chain. Therefore, we have:

0)()()1()( =-+-= tEtPAtOAtOA iiii
Thus, for each next transfer of G[N,T]={0,1,0,0, … 0,0,1,1}, we can recursively find
the corresponding transfer amount as the following:

)()1()( tPAtOAtE iii +-= (7)

1 2 … T
A1

E1(1) E1(2) … E1(T)
A2

E2(1) E2(2) … E2(T)
… … … … …
AN

EN(1) EN(2) … EN(T)

    (a) Full schedule represented by EA matrix

0 1 0 0 1 0 0 1 0 1 1
g1

1   g1

2    …    g1

T     g2

1      g2

2       …    g2

T     …   gN

T-1  gN

T

          Page 1                        Page 2                     Page N
    (b) Gender Marks G of a String-Schedule

   Fig. 3.   Formation of Code Strings in AGGOA.
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en, we can evaluate the total cost or the efficiency of this full schedule or the giv
nder map by (6). Thus, GA mutation and crossover operations are performed o
e map of agent genders rather than over the string-values of the full schedule.

Step-1(Representing Agent Genders):
we represent the full schedule Ei(t), i=1..N, t=1..T, where Ei(t) can have one
among Z values, by a gender-map string G of N*T digits ˛ {0,1}: "1" means
to transfer all of available products to the next agent in the given product
line; "0" means no transfer, i.e. OAi(t)=0.

Step-2(Generating Gender Maps):
generate a population of H strings Gh[N*T], h=1..H, for each string Gh[N*T]:

 + WHILE ( (5) for Gh[N*T] is false) DO generate new Gh[N*T]
Step-3(Evaluating the generated Gender Maps):

    + evaluate fitness of Gh[N,T] by (6);
Fig. 4. Genetic Gender-Oriented Algorithm with Agents.

 Analysis and Estimation

e complexity of the given problem for each agent using the gender concept is 2(T*N).
e total complexity of this approach is the sum of agent’s complexity and the over-
ad of sending data from one agent to the other in a product line. The overhead de-
nds on the product line configurations, especially their lengths, and on the data
nsmission speeds via networks. In theory, with an assumption that the data trans-

ission time is zero, it is MaxL*2(T*N) where MaxL is the maximal length of product
es and may range in [1,N]. However, this theoretical estimation on complexity may
t show the real picture because the data transmission time is not zero.
In order to estimate the performance of the proposed agent-based genetic method

GGOA we simulate and compare it with a standard lot-sizing method (SM) which
es step-down allocation mechanism [9] and a standard genetic algorithm SGA with-
t agents. We use two criteria : (i) computation time Tc to evaluate performance and
) response time Trp to evaluate quality of service. We measure the computation
es of the methods when they achieve the same quality of solution, i.e. approxi-

ately the same cost of holding and transferring calculated by (6). The results are
own in Fig.5a, the time differences between AGGOA and SGA are recorded while
 the size of the domain, is varying from 1 to 10 values. The simulation results
ig.5a) show us that AGGOA can find a inventory schedule of the same quality as by
A for a significantly less time. The more Z is the more this tendency shows.

Step-4(Selecting Gender Maps):
    + use the obtained evaluation to select K parents among given H strings
       Gh[N*T], h=1..H by a given schemata.

Step-5(Reproducing New Gender Maps):
use crossover and mutation operators of GA to reproduce a new popu-
lation (generation) of H strings G’h[N*T], h=1..H. from K parents. Then, for
each new-born string G’h[N*T] go back to Step-3 and then Step-4.

Step-6(Checking Age):
based on a life counter LC go back to Step-3 or stop.
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In evaluating the quality of service we measure how quickly a new plan of inven-
tory management is found when there is a change in production configuration or in
market demands. The response time Trp is the period of time which is needed for each
method to modify the existing inventory management plan since the change occurs.
Response times of AGGOA and SM are recorded while the number of time moments
T is varying from 1 to 12 slices. The simulation results (Fig.5b) show us that AGGOA
can modify its plans for less time than SM can. This trend continues when the number
of time slice is more than 12.

(a) (b)

Fig. 5.  Simulation Results.

The obtained results in Fig.5a can be explained by the fact that the standard genetic
algorithm SGA heavily depends on Z since it represents a transfer plan by a full-
schedule string EA={E1(1),E1(2),..,E1(T),.., EN(1), ..,EN(T)} as usual, using values of
the amounts to be transferred. Meanwhile, AGGOA’s computation time does not
change while Z increases. That is because AGGOA uses gender marks of agents to
represent transfer plan and therefore does not depend on Z. We also obtain better re-
sults with AGGOA in term of response time (Fig.5b) because when there is a change,
either in production configuration or in market demands, only agents which participate
in the given product line modify their data, not all the agents in the system. On the
other hand, the proposed method AGGOA will not be better than SGA or SM for the
problems with unstructured search space where the gender concept can not be applied.
This is because in unstructured search problems where the distribution is random heu-
ristics do not work and a standard GA would be the best solution.

6   Conclusion

We have combined agents and a genetic algorithm in a solution for a planning problem
in distributed and multistage production. The use of agents breaks the initial search
problem with a complexity of four dimensions into identical smaller search tasks for
each agent with two dimensions. A concept of agent genders is introduced and used to
abstract search levels and therefore reduces the searching time for an optimal plan.
That is why we can gain significant time cuts as shown in simulation results. This
approach can also deal better with updating data or responding to dynamic changes in
large-scale E-business environment. The proposed model can be applied for solving
other management or search problems in other areas. In the future we will work on
generalizing the gender concept for other problems.
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Résumé. Cet article présente une évaluation de la fonction de résumé du
système Extractor. Quatre attributs de qualité ont été considérés, soit la
cohérence et la balance des résumés produits ainsi que la polyvalence et la
performance du système. Notre démarche a pour but d’évaluer les deux
premiers attributs, représentant des problèmes bien connus en résumé
automatique, pour procéder à leur amélioration tout en minimisant la
dégradation des deux autres attributs, purement quantitatifs. Notre  évaluation
diffère de ce qui a été fait en ce sens qu’elle se concentre sur le contexte propre
à l’activité résumante d’Extractor. Notre travail tire profit de l’abondante
documentation qui s’organise autour des approches pour le résumé automatique
et des méthodes d’évaluation des systèmes.

1 Introduction

Le moteur de recherche Google [8] répertorie 1,346 millions de pages web, une forte
proportion de celles-ci véhiculant de l’information en langage naturel. Devant cette
masse d’information, le résumé automatique a été proposé comme solution viable à
plusieurs reprises. En effet, on retrouve désormais plusieurs systèmes dédiés à cette
tâche. Par exemple, Copernic.com a mis au point l’assistant de lecture Copernic
Summarizer [5], basé sur le système Extractor de Peter D. Turney [26]; nStein [19] a
mis au point NewsEmailer pour le résumé d’articles de journaux; Inxight [11] propose
un environnement de développement nommé Summarizer SDK.

Dans cet article, nous présentons une évaluation du système Extractor dans son
contexte d’utilisation comme outil de résumé automatique. Le but recherché est de
déterminer les lacunes afin de procéder à des améliorations, ce qui est en cours de
réalisation. La section qui suit introduit les approches du résumé automatique et les
métriques utilisées dans notre évaluation. La section 3 présente l’évaluation du
système Extractor. Enfin, les sections 4 et 5 présentent respectivement une discussion
des résultats et la conclusion.

2 Fondements Théoriques

Afin d’être en mesure de caractériser le système Extractor, les sections 2.1, 2.2 et 2.3
présentent trois approches importantes en résumé automatique: l’approche en surface
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(surface-level), l’approche en profondeur (entity-level) et l’approche basée sur le
discours (discourse-level). Les métriques que nous avons utilisées pour l’évaluation
du système sont présentées par la suite.

2.1 L’approche en Surface

L’approche classique utilisée pour le résumé automatique consiste à traiter le texte
source en surface [14]. Le traitement en surface est issu du calcul statistique et du
repérage d’indices explicites. Il ne demande que peu de connaissances linguistiques et
est donc peu dépendant du langage et peu coûteux (temps de calcul, espace mémoire).
Le début des travaux remonte à 1958, avec la méthode de Luhn qui consiste à extraire
les phrases contenant les unités textuelles revenant le plus fréquemment dans le texte
source [13]. Puis, Baxendale ajoute que la position ordinale des phrases est un bon
indice de la représentativité de celles-ci [4]. Edmundson met en évidence
l’importance des mots contenus dans les titres [7] et introduit la méthode des indices,
exploitant la présence de mots positifs (comparatifs, superlatifs, adverbes de
conclusion) et de mots négatifs (expressions anaphoriques, expressions péjoratives).
Cette méthode est reprise par plusieurs auteurs [10,18]. Plus tard, d’autres
contributions s’ajoutent, comme les travaux sur les mots commençant par une
majuscule [1,12] et les travaux sur les phrases indicatrices suivant des patrons
prédéfinis [21]. Bon nombre de systèmes découlent de ces travaux, la plupart
produisant des résumés par extraction de phrases (extract) par opposition aux
systèmes faisant la génération de langage naturel (abstract).

2.2 L’approche en Profondeur

L’approche en profondeur présuppose un formalisme de représentation des
connaissances qui permet de mettre en évidence la corrélation entre les mots ou la
progression thématique. Certains systèmes procèdent à une analyse syntaxique pour
étiqueter les mots du texte source (nom, adjectif, verbe) [6]. D’autres proposent une
décomposition chronologique et sémantique du texte en segments. [23]. L’étude des
liens entre les segments leur permet de caractériser la structure du texte. D’autres
encore exploitent une base de connaissances associant chaque sujet au vocabulaire le
plus fréquemment utilisé pour en traiter [10]. Une autre approche pour le traitement
en profondeur consiste à transformer le texte en un graphe où chaque phrase est un
sommet et où les liens conceptuels entre les phrases sont les arêtes [25]. Il existe alors
un lien conceptuel entre deux phrases distinctes si elles font référence à un même
concept ou à un concept sémantiquement voisin. Enfin, une approche consiste à
appliquer le raisonnement par cas pour associer le texte à un thème archivé dans la
base de cas et en réutiliser les connaissances pertinentes [22]. Un résumé peut alors
être produit en présentant les points saillants du thème dont il est question.

2.3 L’approche Basée sur le Discours

L’approche basée sur le discours regroupe des techniques reconnues pour augmenter
la cohérence et la cohésion d’un résumé produit par extraction de phrases [14]. Par
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exemple, certains systèmes capturent le discours de l’auteur dans une structure
appelée chaîne lexicale [3]. Les chaînes lexicales sont des séquences de concepts
séparés des relations de cohésion textuelle (synonymes, antonymes, expressions
anaphoriques). D’autre systèmes portent sur la structure argumentative du texte
source et ont pour base commune la théorie des structures rhétoriques de Mann et
Thompson  (Rhetorical Structure Theory – RST [16]).  On y retrouve entre autres les
travaux de Ono, Sumita et Miike [20] et de Marcu [15].

2.4 Les Métriques d’Évaluation

Les quatre attributs de qualité que nous utilisons sont les suivants :
La cohérence définit la structure d’un discours en terme de relations entre les

segments de texte. Un résumé cohérent laisse une impression de complétude
[15,16,17].

La balance exprime le rapport entre l’importance d’un sujet dans le texte source et
l’importance accordée dans le résumé [17].

La performance mesure le nombre de mots qu’il est possible de traiter par unité de
temps.

La polyvalence est ici le nombre de langues dans lesquelles le système peut
résumer.

Les deux premiers attributs sont bien connus en résumé automatique mais aucune
méthode ne permet de les mesurer précisément. Les deux autres sont strictement
quantitatifs, donc facilement mesurables. Ils sont présentés ici pour discuter de
l’impact négatif que pourrait avoir l’ajout de connaissances linguistiques au système
Extractor.

3 Évaluation d’Extractor

Le système Extractor de Peter D. Turney [26] est basé sur l’approche en surface. Il
permet d’extraire de 3 à 30 concepts d’un texte source. Turney les appelle KeyPhrase
car il s’agit en fait de groupes de 1,2 ou 3 mots. Dans ce papier, nous utiliserons le
terme « concept » pour référer aux Keyphrases sans toutefois référer à la notion de
concepts définis dans une hiérarchie. Les techniques utilisées pour extraire et classer
les concepts en ordre d’importance sont basées sur l’information de surface suivante :

1. La fréquence d’apparition du concept : plus un concept est utilisé fréquemment
dans le texte, plus il est important.

2. Le nombre de mots dans le concept : plus un concept contient de mots (jusqu’à
concurrence de 3), plus il est important.

3. La position du concept dans le texte : les concepts en début et en fin de texte sont
plus importants que ceux dans le corps du texte.

Une dizaine d’indices sont associés à ces informations et servent à bonifier
l’importance des concepts, par exemple : bonus pour les concepts en début de texte,
bonus pour les concepts en fin de texte, bonus pour les concepts de 2 mots, bonus
pour les concepts de 3 mots, etc. Ces indices varient selon la longueur du texte source
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et ont été ajustés par entraînement préalable dans GenEx, un algorithme génétique
maximisant la correspondance entre les concepts générés par Extractor et ceux
déterminés par un expert humain pour un même texte source. En sortie, un utilisateur
peut obtenir la liste des concepts les plus saillants ou un résumé de longueur variable
produit par extraction des phrases contenant ces concepts. Notre objectif est d’évaluer
la qualité de ces résumés.

Il est important de souligner que le taux  de contraction des résumés d’Extractor
est variable. En effet, il est fonction du nombre de concepts extraits et de la densité de
concepts à l’intérieur des phrases. Ainsi, si une phrase contient trois concepts, elle les
représentera tous trois au sein du résumé. Comme le nombre de concepts extraits
varie de 3 à 30, le nombre de phrases représentatives attendues varie quant à lui de 1 à
30.

La qualité des concepts produits par Extractor a été évaluée par son auteur. Sa
démarche a été de comparer les concepts extraits et ceux qu’il considère comme
attendus [26]. De plus, Barker et Cornacchia ont procédé à deux expériences
consistant à comparer les concepts extraits à ceux choisis par des experts humains [2].
Ce type de comparaison mène à des résultats intéressants au niveau de la qualité des
concepts, mais n’apporte aucune information quant à la qualité des résumés. Notre
évaluation diffère de ce qui a été fait en ce sens qu’elle se concentre sur le contexte
propre à l’activité résumante d’Extractor, présenté à la section suivante. Par la suite,
nous décrivons notre corpus et les méthodes d’évaluation utilisées pour chaque
attribut.

3.1 Le Contexte de l’Activité Résumante

La notion de contexte a été introduit par Karen Sparck Jones [24]. Nous l’utilisons ici
pour déterminer le rôle du résumé pour l’utilisateur du système. Tout d’abord,
Extractor est utilisé dans le logiciel Copernic Summarizer, un assistant de lecture de
documents électroniques. Le but premier du logiciel est que les résumés soient
compréhensibles sans la lecture du texte source. Il doit permettre de traiter des
documents de formats divers et de niveaux de langage différents : groupe de
discussion, article journalistique, publication scientifique. Il doit fournir au lecteur un
condensé représentatif du sujet principal du document, mais doit aussi traiter
l’ensemble des sujets pour, au besoin, permettre au lecteur de raffiner son résumé.
Dans le contexte de l’Internet, le système doit supporter plusieurs langues et être très
rapide pour effectivement accélérer la navigation.
   Le choix des attributs de qualité a été fait de façon à évaluer précisément la qualité
des résumés d’Extractor dans le contexte de Copernic Summarizer.

3.2 Le Corpus

Le corpus est composé de 100 articles de journaux tirés des quotidiens le Devoir
[http://www.ledevoir.com] et le Soleil [http://www.lesoleil.com]. Les articles ont une
longueur variant entre 450 et 2000 mots. Le fait de ne disposer que d’un seul type de
document électronique biaise nos résultats mais l’ajout de documents en d’autres
langues, formats et longueurs est en cours.
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3.3 Évaluation de la Cohérence

Nous avons évalué la cohérence des résumés au niveau des liens entre les phrases.
Une incohérence survient lorsqu’une phrase laisse une impression d’incomplétude.
Par exemple, une unité textuelle commençant par l’expression « D’une part » doit être
suivie d’un autre débutant par « D’autre part », à défaut de quoi le propos est
incomplet. Pour mesurer la cohérence, nous avons tout d’abord posé l’hypothèse de
Mann et Thompson, à savoir que deux segments de textes sont reliés de telle sorte que
l’un joue un rôle spécifique par rapport à l’autre. Le segment le plus essentiel à la
compréhension du propos de l’auteur est dénommé noyau et le segment qui sert
d’appui (contraste, cause, concession, etc.) est dit le satellite [16]. Puis, nous avons
reproduit l’expérience de Marcu [15], qu’il appelle cue-phrase-based approach, et
n’avons considéré que les liens entre les phrases débutant par un marqueur de relation
et celles qui les précèdent. Nous nous sommes limités à une soixantaine de marqueurs
de relation. Par conséquent, les phrases n’ont pas toutes été exprimées en termes de
noyau ou de satellite. La figure 1 donne un exemple de lien pour le marqueur « Car ».
À la lecture, on peut reconnaître que la phrase (b) est la cause de l’action délibérée
décrite en (a) et donc que l’essentiel du propos de l’auteur se trouve en (a).

Fig. 1. Les phrases (a) et (b) sont liées par le marqueur de relation « Car ».

Nous avons analysé les résumés d’Extractor pour l’ensemble du corpus et identifié
les noyaux et les satellites tels que mis en évidence par les marqueurs de relation. Les
résumés ont été produits pour une extraction de dix (10) concepts. La figure 2
présente le nombre de satellites isolés et de satellites en présence de leur noyau. Selon
les hypothèses posées ci-haut, un résumé cohérent et minimal ne devrait présenter que
les noyaux des argumentations.
Les deux situations sont interprétées comme suit: (1) un satellite seul dénote une
incohérence; (2) un satellite et son noyau préservent la cohérence mais ne constituent
pas un extrait minimal. Un incohérence a donc été relevée dans 26% des résumés. Et
un extrait cohérent mais non minimal a été relevé dans 21% des résumés. Nous
n’émettons pas de jugement quant à la qualité du système Extractor mais soulignons
que le traitement de la cohérence peut améliorer 36% des résumés, compte tenu que
les situations (1) et (2) ont été remarquées en même temps dans 11% des cas.
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Fig. 2. Nombre des résumés présentant un satellite seul et un satellite et son noyau.

3.4 Évaluation de la Balance

Pour produire des résumés balancés, un système doit pouvoir diviser les sujets
abordés dans le texte source. L’expérience qui suit a pour but de montrer qu’Extractor
ne permet pas de faire de divisions entre les sujets. Nous avons combiné les articles
du corpus de façon à avoir des documents traitant de 2, 3 et 4 sujets différents. Par
exemple, un texte à caractère politique a été concaténé à un texte portant sur les
technologies et à un texte d’art culinaire. Nous avons ainsi produit une vingtaine de
nouveaux documents de tailles variant entre 300 et 5000 mots. Pour obtenir un
document de taille désirée, nous avons résumé chaque article à l’aide d’Extractor et
les avons mis bout à bout. Par exemple, un document de 1000 mots traitant de 4 sujets
est en fait un groupement de 4 articles résumés en 250 mots.

Nous avons ensuite produit le résumé des documents et associé à chaque sujet le
pourcentage de phrases qui en traitent. Le tableau 1 présente un exemple de résultat
sur les documents de 1000 et de 5000 mots.

Pour les documents de taille variant entre 400 et 900 mots, nous avons remarqué un
bon équilibre dans la proportion du résumé associée à chaque sujet. Cependant, à
partir de 1000 mots, on remarque une dégradation de la balance. Par exemple, pour
les documents à 4 sujets, le premier occupe toujours plus de 38% du résumé alors que
le dernier n’occuper au mieux que 7%.

3.5 Évaluation de la Polyvalence

Extractor permet de produire des résumés pour des textes sources en cinq langues:
anglais, français, allemand, japonais et espagnol. Les connaissances linguistiques sont
divisées en modules pour chaque langage et permettent d’identifier: les mots vides de
sens (stop words), les verbes, les abréviations, les pronoms et la racine des mots, pour
fins d’analyse morphologique.
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Tableau 1. Balance entre les sujets pour des documents de 1000 mots et de 5000 mots.

3.6 Évaluation de la Performance

Pour évaluer la performance, nous avons groupé les articles du corpus de façon à
avoir des documents de taille variant entre 500 et 100 000 mots. Nous avons remarqué
que le temps de traitement a une tendance linéaire. Cela vient du fait que le temps de
lecture du texte augmente linéairement et que l’algorithme d’extraction se limite à 30
concepts quelle que soit la taille du texte source. Typiquement, Extractor permet de
traiter 25000 mots à la seconde. Cette mesure n’est prise qu’à titre indicatif et servira
de référence lors de l’amélioration du système.

4 Discussion

L’objectif de notre expérimentation était d’évaluer le système d’extraction de
concepts Extractor dans le contexte de l’assistant de lecture Copernic Summarizer
afin de déterminer ses points faibles et d’apporter des améliorations.

L’étude du système nous a permis de remarquer des lacunes au niveau de la qualité
des résumés, en particulier au niveau de la cohérence entre les phrases extraites
(figure 2) et de la balance entre les sujets abordés (tableau 1).

Au niveau de la cohérence, on remarque qu’un résumé de petite taille présente
souvent des phrases secondaires au propos de l’auteur et laisse une impression
d’incomplétude. Cette lacune peut être corrigée, du moins partiellement, en associant
un poids plus fort aux phrases du noyau de l’argumentation. Pour ce faire, nous avons
implémenté la méthode des indices de Marcu [15] (cue-phrase-based approach). Pour
l’instant, nous avons recensé plus d’une soixantaine de marqueurs de relation
fréquemment utilisés en début de phrase pour le français et une quarantaine pour
l’anglais. Pour préserver la polyvalence, la méthode devra être étendue aux autres
langues supportées par Extractor. Les travaux comme celui de Ono, Sumita et Miike
[19] semblent confirmer que la méthode s’applique aussi bien aux langues romaines
(français, anglais, espagnol, allemand) qu’au japonais. En ce qui concerne la
performance, on peut remarquer que le traitement de la cohérence ralentit Extractor
(figure 3), mais d’un point de vue empirique, le temps de traitement nous paraît a
priori acceptable.

Document de
1000 mots

Document de
5000 mots

Nombre de sujets : 2 3 4 2 3 4

Sujet 1 (%) 71 59 38 82 81 55
Sujet 2 (%) 29 24 44 18 11 34
Sujet 3 (%) 17 12 8 4
Sujet 4 (%) 6 7
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Fig. 3. Performance d’Extractor seul et performance du prototype de cohérence pour des textes
de 1000 à 5000 mots.

En ce qui concerne la balance, nos observations indiquent que le système produit de
bons résumés pour des textes de taille variant entre 400 et 900 mots. En deçà de cette
taille, il est clair que le résumé est trop court pour aborder chaque thème. Pour les
textes de plus de 900 mots, il est important d’ajuster la sélection des phrases pour
assurer la balance. À cette fin, le texte pourrait être segmenté en unités thématiques et
résumé par segment. L’algorithme de Hearst [9] semble approprié pour cette tâche et
nous travaillerons dans cette direction afin de déterminer le sujet principal des textes
ainsi que les sujets secondaires. Idéalement, ces connaissances devraient permettre à
l’utilisateur de raffiner le résumé en choisissant un ou plusieurs concepts (query based
summarization).

5 Conclusion

Le but de cet article était d’évaluer le système Extractor au niveau de son activité
résumante. Après avoir présenté les fondements théoriques permettant de caractériser
l’approche utilisée par un système de résumé automatique, nous avons décrit quatre
attributs de qualité. Ceux-ci ont été utilisés pour évaluer Extractor et lui apporter des
améliorations. La suite de nos travaux consistera donc à poursuivre ces améliorations
et évaluer d’autres systèmes utilisés dans le même contexte.
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Abstract. This paper presents a formalisation of obligations for BDI
agents. Although a lot of effort has been put into studying the properties
of B(elief)D(esire)I(ntention) logics, little has been done to incorporate
a deontic component into such logics. We identify two broad categories
of obligations: general obligations which express normative statements
that ought to be the case for all agents, and relativised obligations which
have an explicit bearer and a counterparty. We present a formal analysis
of general obligations and relativised-to-one obligations from a bearer
to a single counterparty. We also discuss how relativised-to-one obliga-
tions arise as a result of bilateral commitments, and finally we examine
obligations and relativised-to-one obligations in the context of different
notions of realism for BDI agents.

1 Introduction

Agents are obviously highly complicated systems and formal theories that de-
scribe and predict their behaviour have attracted considerable attention within
the Artificial Intelligence community. One of the most well known theoretical
frameworks, the BDI paradigm, describes agents as having three propositional
attitudes: beliefs, desires and intentions. Although a lot of effort has been de-
voted to the study of BDI logics, little work has been done in incorporating and
studying obligations. However, since agents are required to act and interact in
an increasingly complex environment, rules and norms may be adopted in order
to facilitate the means for basic social interaction and as a way of regulating
the agents’ behaviour. Multi-agent environments in which agents are required to
cooperate and negotiate need some means of regulating their behaviour in order
to avoid disruption and to ensure smooth performance, fairness and stability.
For instance consider an agent that desires to participate in an auction because
it desires to acquire an item. If the agent is allowed to register and participate in
the auction by the auction house, then this creates the obligation that in case the
agent wins the item it has to pay the price of the winning bid to the auctioneer.
Moreover we can extend the example and consider that the agent may decide to
violate its obligation if it is offered the same good by another agent at a con-
siderably lower price. This violation of its obligation may have consequences for
the agent, perhaps the agent will be blacklisted by the particular auction house
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and it may not be allowed to participate in auctions any more. But if the agent
weights its gains and decides that it is to its benefit to violate the obligation, it
may do so. Although the agent’s desires and intentions can be formalised in the
BDI framework, a deontic component expressing obligations and their relations
to beliefs, desires and intentions is missing.

In this paper we provide a formalisation of obligations in the BDI framework.
We identify two broad categories of obligations: general and relativised obliga-
tions. The former express normative states that ought to be the case for all
agents, whereas the latter express obligations which explicitly involve a bearer
and one or more counterparty agents. Here we concentrate on relativised-to-one
obligations where the counterparty is a single agent. Such obligations seem to
result from bilateral commitments and the adoption of roles. We discuss a defi-
nition of bilateral commitments which involves among other things the adoption
of a relativised-to-one obligation. The adoption of roles and their relation to
relativised-to-one obligations although discussed, are not formally analysed. The
paper is organised as follows. In the following section we present our extended
logical framework which is based upon the classical BDI paradigm. Next we dis-
cuss the deontic concepts of obligation and relativised obligation and how they
arise. Then we present a formal analysis of general obligations and relativised-to-
one obligations, as well as how relativised-to-one obligations result from bilateral
commitments. Finally, we discuss relativised-to-one obligations in the context of
the three notions of realism for BDI agents. The paper ends with a summary of
the main results, a discussion of related work, and a pointer to future work.

2 The Logical Framework

The BDI framework [7],[8] is a theoretical formalism in which an agent’s infor-
mation state is described in terms of beliefs, its motivational state in terms of
desires (or goals), and its deliberation state in terms of intentions. Our logical
framework is based on the BDI paradigm and it is a many-sorted first order
modal logic which enables quantification over various sorts of individuals such
as individual agents and groups of agents. The language includes apart from the
usual connectives and quantifiers, three modal operators B, D, and I for express-
ing beliefs, desires and intentions respectively. There are three sorts: Agents,
Groups of agents, and Other which indicates all the other objects/individuals
in the universe of discourse. Although space does not allow to present all the
technical details, in order to make this paper self-contained we provide a brief
and compact account of the syntax of the language L in Table 1.

Semantics is given in terms of possible worlds. A model for the logical lan-
guage L is a tuple M =< W,U,B,D, I, π > where W is a set of worlds, U is the
universe of discourse which is a tuple itself U =< UAgents, UGroups, UOther >, B
is the belief accessibility relation, B : UAgents → ℘(W × W ), and D and I are
similarly the desire and intention accessibility relations. Finally π interprets the
atomic formulas of the language. Satisfaction of formulas is given in terms of a
model M , a world w, and a mapping v of variables into elements of U :

Mv,w |= P (τ1, ....τk) iff < v(τ1), ...., v(τk) >∈ π(P k, w)
Mv,w |= ¬φ iff Mv,w 6|= φ
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Table 1. The Syntax of L

<agent-term> ::= <agent-var> | <agent-const>
<group-term> ::= <group-var> | <group-const> |

{<agent-term>,..,<agent-term>}
<other-term> ::= a variable or constant standing for any other

individual in the universe of discourse
<term> ::= <agent-term> | <group-term> | <other-term>
Pred ::= <Pred-symbol> (<term>,...,<pred-symbol>)
var ::= any element of the set V of all variables
<wff> ::= <Pred-symbol>(<term>,...,<term>)

B(<agent-term>,<wff>) | D(<agent-term>,<wff>)
I(<agent-term>,<wff>) | (<term>=<term>)
(<agent-term>∈<group-term>)|
¬ <wff> | <wff> ∧ <wff> | ∀ <var><wff> | true

Mv,w |= φ ∧ ψ iff Mv,w |= φ and Mv,w |= ψ
Mv,w |= ∀xφ iff for all d in U , Mv[d/x],w |= φ
Mv,w |= B(i, φ) iff ∀ w′ such that Bi(w,w′), Mv,w′ |= φ
Mv,w |= (τ1 = τ2) iff ‖ τ1 ‖=‖ τ2 ‖
Mv,w |= (i ∈ g) iff ‖ i ‖∈‖ g ‖
By imposing restrictions on the accessibility relations we can capture different

axioms for the respective modalities [3]. Thus, B is taken to be serial, transitive
and symmetric, I is serial, and no particular restrictions are imposed on D. Thus
for belief we adopt the K, D, S4, and S5 axioms and the Nec rule, for desires the
K axiom and Nec rule, and for intentions the K and D axioms and the respective
Nec rule. We illustrate with the axioms for belief:

K. B(i, φ) ∧B(i, φ ⇒ ψ) ⇒ B(i, ψ) (Distribution Axiom)
D. B(i, φ) ⇒ ¬B(i,¬φ) (Consistency axiom, seriality)
S4. B(i, φ) ⇒ B(i, B(i, φ)) (Positive Introspection axiom, transitivity)
S5. ¬B(i, φ) ⇒ B(i,¬B(i, φ)) (Negative Introspection axiom, symmetry)
Nec. if ` φ then ` B(i, φ) (Necessitation Rule)

The K axiom and the Necessitation rule are inherent of the possible worlds
approach and they hold regardless of any restrictions that we may impose on the
accessibility relations. Thus the agents are logically omniscient [3] with respect
to their beliefs, desires and intentions. Temporal and action components such
as those of [7], [8] can be incorporated in a straightforward way; due to lack of
space we chose not to do so in the current exposition.

2.1 Notions of Realism

It is reasonable to assume that an agent’s beliefs affect its desires and inten-
tions as well as the course of actions that it is going to take in order to achieve
them. There are two ways of examining the relations between the three attitudes:
(i) by imposing conditions between the sets of the belief, desire, and intention-
accessible worlds and (ii) by imposing restrictions on the structural relationships
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Fig. 1. i) Strong Realism, ii) Realism, iii)Weak Realism

Table 2. Axioms for the Notions of Realism

Strong Realism Realism Weak Realism
I(i, φ)⇒ D(i, φ) B(i, φ)⇒ D(i, φ) I(i, φ)⇒ ¬D(i,¬φ)
D(i, φ)⇒ B(i, φ) D(i, φ)⇒ I(i, φ) I(i, φ)⇒ ¬B(i,¬φ)

D(i, φ)⇒ ¬B(i,¬φ)

between worlds if a temporal component is included. These constraints are called
notions of realism and the interesting and meaningful ones can be characterised
semantically and captured axiomatically. In [8] three such notions which suggest
ways in which the propositional attitudes could be related to each other yielding
different types of agents were suggested. Here we will present the axioms that
ensue by considering conditions between the sets of accessible worlds. These set
relations between the belief-, desire- and intention-accessible worlds are shown
in Figure 1. Since set containment corresponds to logical implication, and inter-
section of sets corresponds to consistency Table 2 presents the axioms for each
of the three notions of realism In the absence of a temporal component some of
the axioms that are presented such as I(i, φ) ⇒ B(i, φ) may appear unintuitive.
Such formulas should be read as “if agent i intends φ, then it believes it to be
possible (achievable) some time in the future”.

2.2 Mutual Beliefs

Apart from adopting modal operators for expressing an individual agent’s atti-
tudes we will also consider modal operators describing group attitudes. We ex-
tend our language to include two more modal operators EB(g, φ) and MB(g, φ)
which are read as “Everybody in a group of agents g believes φ” and “φ is a
mutual belief among the agents in group g” respectively. Following [3]:

EB(g, φ) ≡def ∀i ∈ g ⇒ B(i, φ)
Intuitively everybody in a group of agents believes φ if and only if every agent

i agent in this group believes φ. Then a proposition φ is mutually believed among
a group of agents if everyone believes it, and everyone believes that everyone else
believes it, and everyone believes that everyone believes..., and so on:

MB(g, φ) ≡def EB
k(i, φ) for k=1,2,....

As Fagin et al. showed [3] this definition of mutual belief (they use common
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knowledge instead), semantically requires the notion of reachability which in-
volves paths of arbitrary finite length. Given a set of accessibility relations, a
world w′ is reachable from w with respect to the given set, iff there is a sequence
of worlds starting from w and ending in w′ such that each pair of worlds in the
sequence is in one of the given accessibility relations. A group g has mutual belief
of φ in a world w if there is a world w′ such that there is a path in the graph
from w to w′ whose edges are labelled by members of g. Thus:
Mv,w |= EBk(g, φ) iff Mv,w′ |= (φ) ∀w′ that are g-reachable from w in k steps.
Mv,w |= MB(g, φ) iff Mv,w′ |= (φ) ∀w′ that are g-reachable from w.

Using the second condition the following axiom and rule can be added:
MB(g, φ) ⇔ EB(g, φ ∧MB(g, φ))
From φ ⇒ EB(g, ψ ∧ φ) infer φ ⇒ MB(g, ψ) (Induction Rule)

3 Obligations

Deontology is in principle the study of norms and associated concepts such as
obligations and permissions for human agents [4]. In the same sense it seems
natural to use obligations to express what is ought to be the case for artificial
agents. Obligations seem to be external to agents, usually obligations are being
imposed by another agent or perhaps a larger body, such as a group of agents,
an organisation or society. We can identify two broad categories of obligations:
general obligations and relativised obligations. In [5] what we have termed rela-
tivised obligations are called special obligations, our use of the word “relativised”
instead of “special” will become clearer later. General obligations express what
is ought to be the case for all agents. These obligations are impersonal, that is no
explicit reference is being made to a particular agent. They express normative
sentences for all agents and can be seen as rules that provide the minimal means
of social interaction and coordination among agents.

Apart from general impersonal obligations, individual agents may hold obli-
gations towards another specific individual or a group of other agents. We distin-
guish between relativised-to-one obligations which are obligations of one agent
towards another agent, and relativised-to-many obligations which are obliga-
tions of an agent towards a group of other agents. Relativised-to-one obligations
can be the result of bilateral commitments. Thus if agent A commits to de-
liver a piece of work to agent B, this bilateral commitment implies among other
things, the creation of a relativised-to-one obligation of A towards B. Although
related, bilateral commitments and relativised obligations seem to be different
in the following sense: if an agent commits to another agent to bring about a
certain state, then this involves not only a relativised obligation on behalf of the
bearer towards the counterparty, but an intention (a personal commitment) of
the bearer to bring about that state of affairs. On the other hand a relativised
obligation may not necessarily mean that the bearer is personally committed to
bring about the state of affairs. Thus, if A is obliged to deliver a piece of work
to B this does not necessarily mean that A has committed itself by adopting an
individual intention to do so. If however, A makes a promise that he is going
to deliver it, then A is declaring that he has made a personal commitment, an
intention to do so. Another way that relativised-to-one obligations arise is via
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the adoption of roles. If A adopts the role of the supervisor towards B, then this
creates certain obligations for the two agents. B has the obligation to submit
draft chapters of the thesis and A has the obligation to provide feedback on B’s
chapters. As an extension of relativised-to-one obligations we have relativised-
to-many obligations of an agent, the bearer, towards a group of other agents,
the counterparty. These obligations arise as a result of social commitments on
behalf of the bearer, or as a result of the adoption of social roles. So if an agent
A makes a social commitment to group g of agents that he will bring about x
this creates an obligation on behalf of agent A towards the group g. If agent
A adopts the role of a teacher towards a group of students g then this cre-
ates certain relativised-to-many obligations such as for instance an obligation to
teach them adequately a particular subject, while at the same time it creates
relativised-to-one obligations on behalf of the students towards the teacher.

The following subsections discuss a formalisation of general obligations, and
relativised-to-one obligations and their relation to bilateral commitments. The
issue of how such relativised-to-one obligations result from the adoption of roles
is a subject of current research and will be treated separately. Relativised-to-
many obligations will not be dealt with at this stage.

3.1 Formal Analysis

Deontic logic attempts to represent a set of norms or obligations that an agent
conforms to. In standard propositional deontic logic (SDL), an obligation oper-
ator O prefixes propositions φ, ψ, ... to create formulas of the form O(φ). Such
a formula is read “It is ought to be the case that φ”. In a statement like O(φ)
there is no explicit reference to the individual agent for whom φ ought to be the
case. Since the standard obligation operator takes only one argument it cannot
capture relativised to one obligations of an agent towards another agent. Intu-
itively another operator O(i, j, φ) relativised to two agents is needed in order to
describe such obligations of an agent i towards another agent j. In order to be
able to express general and relativised obligations in our framework we extend
our language to include two modal operators O(φ) and O(i, j, φ). O(φ) is read as
“It ought to be the case that φ”, and O(i, j, φ) as “ Agent i ought to bring about
φ for agent j”. The model for the language needs to be extended as well. Thus
M =< W,U,B,D, I, π,O,O∗ > where O is the accessibility relation for general
obligations and O∗ = {Oij |∀i, j ∈ UAgents ∧ i 6= j} is the accessibility relation
for relativised obligations between pairs of agents. O is considered to yield the
deontically ideal worlds relative to a world w [2]. Semantics is as follows:

Mv,w |= O(φ) iff for all w′ such that O(w,w′), Mv,w′ |= φ
Mv,w |= O(i, j, φ) iff for all w′ such that Oij(w,w′), Mv,w′ |= φ

The axiomatisation for general obligations is provided below:
O(φ) ∧O(φ ⇒ ψ) ⇒ O(ψ)
O(φ) ⇒ ¬O(¬φ)
if ` φ then ` O(φ)

The accessibility relation O for general obligations is required to be serial and
this in turn yields property D. Intuitively D states that there may not be de-
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ontic conflicts, that is not both φ and ¬φ ought to be the case. Furthermore a
permission operator is defined as the dual of the general obligation operator:

P (φ) ≡def ¬O(¬φ)
Although general obligations express what is ought to be the case for all agents,
it does not necessarily mean that what is ought to be the case is going to be
the case as well. Thus the principle of veracity O(φ) ⇒ φ is rejected. We do not
impose any restrictions on the accessibility relation for relativised obligations
Oij . In particular we do not impose seriality; in other words deontic conflicts are
allowed for relativised obligations. Thus, for the relativised obligations operator
we adopt the K axiom and the respective necessitation rule:

O(i, j, φ) ∧O(i, j, φ ⇒ ψ) ⇒ O(i, j, ψ)
if ` φ then ` O(i, j, φ)

One way in which relativised-to-one obligations seem to arise is as a result of bi-
lateral commitments. The term commitment intuitively means “promise”. Com-
mitments are often the result of promises. The basic idea behind our theory is
that bilateral commitments involve the creation of obligations as well as individ-
ual commitments on behalf of the bearer (intentions). We will explicate this idea
via an example: Agent A agrees to rent a house from B and commits himself
to paying a monthly rent. Since A has made a commitment to B, this seems to
have created an obligation now towards B to pay the monthly rent. A’s com-
mitment expressed his intention to do so. Moreover, his obligation and intention
have now become a mutual belief among A and B. In other words bilateral com-
mitments create relativised obligations and personal intentions. To express our
ideas formally we adopt an operator BCom(i, j, φ) defined as follows:

BCom(i, j, φ) ≡def O(i, j, φ) ∧ I(i, φ) ∧MB({i, j}, (O(i, j, φ) ∧ I(i, φ)))

3.2 Further Properties

It seems reasonable to suggest that if something is a general obligation then each
of the agents believes that this is the case (g0 denotes the set of all agents):

∀(i ∈ g0) ⇒ (O(φ) ⇒ B(i, O(φ)))
In other words if φ ought to be the case then each agent i believes that it ought
to be the case. This axiom requires the following semantic condition:

∀i ∈ UAgents, ∀w,w′, w′′ O(w,w′) ∧ Bi(w′, w′′) ⇒ O(w,w′′)
Since general obligations ought to be believed by all agents we also derive:

O(φ) ⇒ MB(g0, O(φ))
This means that normative statements are mutually believed (ideally) by all
agents. For instance driving to the left is a statement mutually believed by all
agents in UK. Further axioms for relativised-to-one obligations will now be ex-
amined. It seems reasonable to suggest that if such an ought-to relation between
an agent (counterparty) and another agent (bearer) is in place, both of them
should be aware of it, or in other words, they should believe that this is the case:

O(i, j, φ) ⇒ B(i, O(i, j, φ))
O(i, j, φ) ⇒ B(j, O(i, j, φ))

Moreover we can accept the stronger axiom that such a relativised-to-one obli-
gations is mutual belief between the bearer and the counterparty:
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Table 3. Theorems of Obligations and Relativised Obligations in BDI Agents

Strong Realism Realism Weak Realism
O(φ) ⇒ ¬D(i, ¬O(φ)) O(φ) ⇒ D(i, O(φ)) O(φ) ⇒ ¬D(i, ¬O(φ))
O(φ) ⇒ ¬I(i, ¬O(φ)) O(φ) ⇒ I(i, O(φ)) O(φ) ⇒ ¬I(i, ¬O(φ))
O(i, j, φ) ⇒ ¬D(i, ¬O(i, j, φ)) O(i, j, φ) ⇒ D(i, O(i, j, φ)) O(i, j, φ) ⇒ ¬D(i, ¬O(i, j, φ))
O(i, j, φ) ⇒ ¬I(i, ¬O(i, j, φ)) O(i, j, φ) ⇒ I(i, O(i, j, φ)) O(i, j, φ) ⇒ ¬I(i, ¬O(i, j, φ))
O(i, j, φ) ⇒ ¬D(j, ¬O(i, j, φ)) O(i, j, φ) ⇒ D(j, O(i, j, φ)) O(i, j, φ) ⇒ ¬D(j, ¬O(i, j, φ))
O(i, j, φ) ⇒ ¬I(j, ¬O(i, j, φ)) O(i, j, φ) ⇒ I(j, O(i, j, φ)) O(i, j, φ) ⇒ ¬I(j, ¬O(i, j, φ))
O(i, j, φ) ⇒ B(j, φ)) O(i, j, φ) ⇒ I(j, φ)) O(i, j, φ) ⇒ ¬I(j, ¬φ))
O(i, j, φ) ⇒ ¬I(j, ¬φ)) O(i, j, φ) ⇒ ¬B(j, ¬φ)) O(i, j, φ) ⇒ ¬B(j, ¬φ))

O(i, j, φ) ⇒ MB({i, j}, O(i, j, φ))
Another plausible principle connects a relativised-to-one obligation with the de-
sires of the counterparty. Thus if an agent i ought to bring about the state of
affairs φ for agent j, then at least j should desire that state of affairs:

O(i, j, φ) ⇒ D(j, φ)
This in turn requires the following semantic restriction to be put in place between
the relativised-to-one and the desire accessibility relations:

∀j ∈ UAgents, ∀w,w′, w′′ Oij(w,w′) ∧ Dj(w′, w′′) ⇒ Oij(w,w′′)
Each notion of realism assumes different relations between the three basic sets
of accessible worlds B, D, and I. In strong realism we have D(j, φ) ⇒ B(j, φ).
This in combination with the axiom that connects relativised-to-one obligations
and the counterparty’s desire entails O(i, j, φ) ⇒ B(j, φ). In realism desires are
related to intentions with the axiom D(j, φ) ⇒ I(j, φ). This in combination with
the axiom relating a counterparty’s desires to a relativised-to-one obligation gives
us O(i, j, φ) ⇒ I(j, φ). This may initially seem peculiar, but this formula can
be understood as stating that if agent i is obliged to bring about φ for agent j,
then j intends to bring about φ (perhaps by encouraging i to commit to bring
about φ). In weak realism the consistency axioms between desires and beliefs
and desires and intentions yield the following theorems:

O(i, j, φ) ⇒ ¬B(j,¬φ)
O(i, j, φ) ⇒ ¬I(j,¬φ)

Table 3 summarises the theorems regarding obligations and relativised-to-one
obligations in the three notions of realism for BDI agents.

4 Concluding Remarks

The research presented in this paper has been motivated by the need to formalise
obligations in the context of the classical BDI paradigm. The paper discussed
general obligations and relativised obligations. In particular a formal analysis of
general obligations and relativised-to-one obligations was presented. One way in
which relativised-to-one obligations arise as a direct result of bilateral commit-
ments undertaken by agents was discussed and formalised. Finally the particulars
of the formal analysis of general obligations and relativised-to-one obligations
with respect to the three notions of realism for BDI agents were also presented.

Obligations and their relevance to Multi-agents systems were discussed in [5].
Krogh distinguishes between general and special obligations. A special obliga-
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tions operator iO expresses the fact that an agent i has an obligation, without
reference to a counterparty agent. Another operator Oi is adopted which ex-
presses what is ideal from the perspective of agent i. The basic idea is that the
Oi operator captures that a state or action is beneficial for agent i and it can
be viewed as being by an agent’s goals states. Another praxiological operator
iEA is adopted and is read as “i sees to it that A”, where A indicates an action.
Finally special obligations with a bearer and a counterparty agent is defined as
iOj(iEA) ≡def iO(iEA)∧Oj(iEA). Our approach is simpler than Krogh’s since
we only adopt two modal operators. Although no action component has been
presented the incorporation of such a component is straightforward. Further-
more, in this paper we have accepted that obligations are external to the agent,
they are either imposed by another agent or by a larger body. Even in the case
of general obligations, the obligations stem from the environment in which the
agent acts and interacts in. The omission of the iO operator under this assump-
tion does not seem to reduce expressiveness. The Oi operator in our framework
can be thought as replaced by the D operator which expresses in what states
the agent would like to be in, i.e. the ideal states for the agent.

Another recent approach involving obligations and BDI agents is [6]. The
authors offer an alternative to the BDI logic, in which the primitive modalities
are beliefs, desires and obligations, whereas intention is not a primitive modality
but an obligation of an agent towards itself. Thus beliefs and desires are indi-
vidual modalities but obligations are defined as social modalities. An operator
OBL(x, y, φ) similar to our O(i, j, φ), expresses that an agent x has an obli-
gation towards agent y to bring about φ. The definition of an intention as an
obligation of an agent towards itself seems unintuitive. Intentions express the
individual agent’s commitments to itself to bring about certain states of affairs.
Obligations on the other hand express what ought to be the case and this sense
they are weaker. Defining intentions as obligations of an agent towards itself
we think unnecessarily deprives intentions of their strong character of personal
commitment. Moreover BDO logic is only able to capture agents as the ones
described by the strong realism constraints. An attempt to describe any other
notion of realism for BDO agents fails because of the following axioms and the
way in which intentions are defined as obligations:

DES(x, φ) ⇒ BEL(x, φ)
OBL(x, y, φ) ⇒ DES(x, φ)
INT (x, φ) ⇒ OBL(x, x, φ)

We will now revisit and sketch the reasoning in the auction example (Section 1):
D(i,participate-in-auction)
D(i,acquire-item)
BCom(i, j,pay(j)) ⇒ O(i, j, pay (j)) ∧ I(i, pay(j))∧

MB(i, j, O(i, j,pay(j)) ∧ I(i,pay(j)))
The first two formulas express that agent i desires to participate in an auction
and acquire an item. The third formula expresses the bilateral commitment that
is created after the agent has been registered in the auction. This bilateral com-
mitment gives rise to a relativised-to-one obligation and a personal commitment
(intention) on behalf of i. We can now imagine that the agent wins the auction
and thus is required to pay the auctioneer (j). However, if i is offered the same
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good by another provider at a lower price it may decide to drop its intention
to pay j and thus break its bilateral commitment and relativised-to-one obliga-
tion. In a BDI architecture we can assume that a decision procedure compares
the loss from violating one’s obligations with that of achieving one’s desire at a
lower cost. If i considers its reputation to be more important than a short-term
gain from a lower price it may keep its commitment, otherwise it may decide to
break it. That will depend on the agent’s design and priorities. Conditions for
punishment for breaking one’s commitments are yet to be formalised.

There are a number of possible avenues for future development of the ap-
proach presented here. Firstly, incorporating a temporal and an action compo-
nent such as the ones in [7] and [8] is straightforward. Secondly, work under way
is dealing with the formalisation of roles and the bilateral adoption of roles by
agents as well as the relativised-to-one obligations entailed by the adoption of
such roles. Although some work on agents and roles has been done [1], this has
not been associated with obligations but rather with the goals that the adoption
of roles entails. A farther goal is to formalise relativised-to-many obligations and
their relation to social commitments and the adoption of social roles. Yet an-
other direction is to define conditions for decommitment, as well as punishment
if an agent chooses to violate a commitment or an obligation.
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Abstract. The problem of Question Answering (QA) as used in
TREC [13] can be formulated as follows:

Given a collection of natural-language (NL) documents find an
answer to given NL query that is a short substring of one of the
documents, and it is found in a relevant context.

We present a novel approach to the problem based on unification-based
grammars for NL.

Keywords: question answering, stochastic unification-based grammars.

1 Introduction

The traditional approach to the problem of QA assumes existence of a knowledge
base, which is used to produce answers to NL questions. The problem, defined
in this way, is too difficult for the current state of the art in natural language
processing (NLP). Schwitter et al. [11] argue that even an easy comprehension
test performed on a simple story of three paragraphs, titled “How maple syrup
is made,” is a too difficult task.

We use an easier version of QA, in which the system returns only a short
document substring that contains an answer. This problem formulation is used in
the TREC competition, where the QA track is introduced in 1999. Some authors
(Mollá et al. [8]) call this version of QA Answer Extraction, which is probably a
more precise name of the task.

There are four related NL-based retrieval tasks:

– classical information retrieval (IR)—the task of retrieving relevant docu-
ments from a collection,

– information extraction (IE)—the task of collecting specific content data,
– QA or answer extraction (AE)—the task of locating an answer, and
– classical QA—the task of providing an intelligible answer to a question using

a knowledge base.
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Let us give more details about the TREC-8 QA task, which is the testbed for
our approach. TREC-8 included 198 questions. All questions can be successfully
answered by relatively short strings—the longest minimal answer has length of
35 bytes. The participants can submit a run of 50-byte or a run of 250-byte
strings. Five ranked strings are submitted for each question. A submission is
ranked according to the reciprocal answer rank (RAR); i.e., 1 mark is given if a
correct answer is found in the first string, otherwise 1/2 marks are given for a
correct answer in the second string, 1/3 for third string, 1/4 for the fourth string,
or 1/5 for a correct answer in the fifth string. Only the highest ranked answer is
taken into consideration. Zero mark is given for not having an answer. The final
evaluation score for one run is the mean reciprocal answer rank (MRAR); i.e.,
the average of the per-question scores.

Here are three examples from TREC-8.1 The first example is the first TREC-
8 question, the second example is the question with the longest minimal answer,
and the third example is an example for which our “classical” IR system could
not find an answer:

1. Who is the author of the book, “The Iron Lady: A Biography of Margaret
Thatcher?” (Young)

2. Why did David Koresh ask the FBI for a word processor?
(To record his revelations)

3. When was London’s Docklands Light Railway constructed? (1987)

A typical approach to QA consists of two phases: First, some relevant pas-
sages are extracted using a standard IR technique. Second, the fine-grained an-
swer extraction is done using a shallow NLP technique. This NLP technique
incorporates a shallow semantic representation of the text and the query. We
describe a novel approach to QA based on a unification-based grammar.

2 Related Work

QA has received a lot of attention recently. The commercial site AskJeeves [1]
offers a service where users can ask NL questions. If an answer is not found, the
system offers similar questions for which it knows the answer. We have tried an
example session with the question: “When did Beethoven die?” The question is
interesting since it appeared in TREC-8, and it is a general question. The system
could not find an answer, but it suggested a list of about dozen questions for
which it knew some answers. Some of them were:

– Where can I find albums with the music of Beethoven?
– Where can I buy a biography of Beethoven on video or DVD?

. . .
– How can I make my end of life wishes known?
– How will I die?

1 After this paper was submitted, the TREC-9 data and results became available. It
will be used in our future evaluations.
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AskJeeves represents a case-based approach where case problems are question
instances and solutions are associated answers. A similar case-based approach
is used in FAQ Finder (Burke et al. [2]). FAQ Finder uses shallow NLP with
a simple lexical semantic method based on WordNet. Given a question, FAQ
Finder uses the classical SMART system to retrieve FAQ files relevant to the
question, and then using a combination of statistical IR and semantic matching,
the relevant question-answer pairs are extracted.

Shallow lexical semantics is also used in the method of predictive annotation
(Radev et al. [9]) used in TREC-8. In this approach, the questions and the
collection documents are annotated with QA-tokens, like DATE$ and PLACE$. For
example, in question “Where did smth happen?” the words ‘Where’ is crucial for
answering the question; however, a classical IR system would remove it as a stop
word. By replacing the word ‘Where’ with the QA-token PLACE$, the removal
can be prevented, and the token gets even a high weight. Pattern matching is
used to annotate queries. The documents are also annotated with QA-tokens.
The two-phase approach is used, consisting of the first IR phase and the second
answer-selection phase.

Deeper semantic processing is applied in the system ExtrAns (Mollá et
al. [8]). ExtrAns is a QA system for Unix man pages, implemented in Pro-
log. Horn clauses are used for semantic representation of the query and the text.
Finding an answer to a query is modeled as “proving” the query using the facts
from the text. For example, the sentence

cp copies the contents of filename1 onto filename2.

is translated into the following set of facts:

holds(e1)/s1. object(cp,o1,x1)/s1.
object(command,o2,x1)/s1. evt(copy,e1,[x1,x2])/s1.
object(content,o3,x2)/s1. object(filename1,o4,x3)/s1.
object(file,o5,x3)/s1. of(x2,x3)/s1.
object(filename2,o6,x4)/s1. object(file,o7,x4)/s1.
onto(e1,x4)/s1.

The question “Which command copies files?” is translated into the query:

object(command,_,X)/S,
(evt(copy,E,[X,Y])/S; evt(duplicate,E,[X,Y])/S),
object(file,_Y)/S)

The answer is located by the standard Prolog resolution procedure.
This QA approach is brittle, so a multi-level fall-back strategy for grace-

ful degradation is introduced. If the system cannot find an answer, then some
contraints are made weaker and the procedure is repeated. If an answer is not
found again, more constraints are weakened or removed, and so on. Finally, a
keyword-based approach is applied at the last level of the strategy.

In section 4 we present a novel unification-based approach to QA, which is
based on the work in unification based-grammars [12]: in particular, the HPSG
grammars [10] and attribute-value logic [3].
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3 Performance of a Classical IR System

As in most other approaches (e.g., [9] and [2]), we also use two phases in QA.
Processing the whole document collection would be too expensive for NLP, so
in the first phase we rely on the MultiText retrieval engine (Cormack et al. [4]).
The MultiText engine retrives a ranked list of 25 relevant 2000-byte passages for
each question. The middle part of each passage most likely contains an answer,
so a simple solution to QA is extraction of the middle part of each passage.

In order to later evaluate our system, we first measure the performace of
this simple extraction method. The evaluation results are presented in figure 1.
The x-axis represents answer lengths in bytes, and y-axis represents the score
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Fig. 1. Simple extraction method

(MRAR). The answer length varies from 35 bytes, which was the shortest mini-
mal answer on TREC-8, to 2000 bytes. Two answer lengths accepted at TREC-8
are emphasized: 50 bytes and 250 bytes.

If we merge all 25 passages for each question, and return this large 50000-byte
passage as an answer, the score of the run would be 0.91. This is represented by
the first horizontal line on the figure. This is an upper bound on the performance
of the NLP part, since the passages returned by the search engine do not contain
answers to 18 questions ( 1×180+0×18

198 ≈ 0.91).
The next lower horizontal line (y = 0.83) is obtained by merging first 5

passages for each question (10000 bytes) and treating this as an answer. The
significant difference between this line and the previous line shows that a signif-
icant number of answers is not located in the first 5 passages, so all 25 passages
are important for our task.

The next two lower horizontal lines (0.73 and 0.72) are the scores obtained
by submitting all and the first five 2000-byte passages as answer strings, re-
spectively. The difference between the numbers is not big since even when the
first correct answer is below the 5th submitted passage, its reciprocal rank adds
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less then 0.2 = 1/5 marks. A significant difference between the 50 000-byte line
(0.91) and these lines implies that the performance can be significantly improved
just by a better ranking of the passages.

Below these horizontal lines, there are two monotonically increasing curves,
which represent the scores of the strings submitted by the simple extraction
method. The lower curve is for the first 5 strings and the higher curve is for all
25 strings. The score for the first five strings is 0.187 for 50-byte run, and 0.549
for the 250-byte run. If we compare this to the results reported on TREC-8, we
can see that the 50-byte result is between 13th and 14th among 17 50-byte runs
with scores from 0.071 to 0.660; and the 250-byte result is between 1st and 2nd
among 24 of the 250-byte runs with scores from 0.060 to 0.646.

The conclusion of this analysis is: The NLP part could improve the results
obtained from the search engine by:

1. re-ranking the passages (0.18 gain), and
2. locating more precisely the candidate string (0.543 = 0.73 − 0.187 gain for

50-byte run, and 0.181 = 0.73 − 0.549 gain for the 250-byte run).

4 QA Using Unification-Based Grammars

A description of unification-based grammars for NL can be found in Shieber [12].
We rely on a more specific kind of unification-based grammar called Head-driven
Phrase Structure Grammar (HPSG) (Sag and Wasow [10]). The HPSG grammar
formalism is described in Carpenter [3]. We use the formalism as defined in
Kešelj [6], which also describes the Java parser Stefy [5] for HPSGs used in our
experiments.

Let us give a short and informal introduction to unification-based grammars.
The unification-based NL formalisms use a data structure called attribute-value
matrix (AVM) or typed feature structure. An AVM can be regarded as the stan-
dard record data structure in programming languages. An example of a simple
AVM is AVM (1):













employee
ID: 001
NAME: J. Q. Public
TEL: 123-4567

DEPT:




dept
ID: SL
NAME: Sales

























nlist
HEAD: 1

TAIL:




nlist
HEAD: 1

TAIL: [list ]













AVM (1) AVM (2)

One specific and important feature of AVMs is re-entrancy, or structure sharing.
For example, in AVM (2) the symbol 1 denotes the elements that are the same,
i.e., shared. Furthermore, we allow AVMs to be cyclic in a sense illustrated by
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AVM (3):

1













employee
ID: 001
NAME: J. Q. Public

DEPT:







dept
ID: SL
NAME: Sales
MNGR: 1































sentence

NP:




pron
ORTH: He
AGR: 1 sg





VP:




verb
ORTH: writes.
AGR: 1

















AVM (3) AVM (4)

AVM (3) represents an employee, who is a member of the “Sales” department,
who is additionally the manager of the department. AVM (4) illustrates how
the AVMs are used to describe NL syntax. It shows how we can enforce number
agreement in the sentence ‘He writes.’ using AVMs and structure sharing.

Beside syntax, AVMs are also used to represent semantics in HPSGs, which
has the following advantages: First, it improves parsing disambiguation since we
can use semantics to prune some alternatives. And second, we have a uniform
representation of syntax and semantics, which makes the grammar easier to
maintain.

Let us use the query “When did Beethoven die?,” which appeared in TREC-8,
to illustrate how we represent question semantics in a unification-based grammar.
The grammar has three rules:




Q

SEM:

[
SELECT: 3

WHERE: 2

[
DATE: 3

]
]



 → When did 1

[
NP

]



V
S: 1

SEM: 2











V
S: 1

[
person

]

SEM:

[
EVENT: die
SUBJ: 1

]





 → die

[
person
NAME: Beethoven

]

→ Beethoven

The result of the query parsing is the following AVM:










Q

SEM:









SELECT: 1

WHERE:







EVENT: die

SUBJ:

[
person
NAME: Beethoven

]

DATE: 1

























The attributes names SELECT and WHERE are inspired by the SQL query
language.
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The relevant passage containing the answer contains the following excerpts:

If Beethoven felt. . . after finishing his monumental Ninth in early
1824. . . (he would die of jaundice and ascites on March 26, 1827), . . .

A part of the semantic representation of the above text is the following AVM:



EVENT: die
SUBJ: Beethoven
DATE: March 26, 1827





which is easily matched to the query.
We will now describe how we use a unification-based grammar in QA. The

parser Stefy [6] uses a chart parsing algorithm. Three charts are constructed in
the process of parsing: a passive chart, an active chart, and a context chart. Fig-
ure 2 illustrates the use of those charts. We do not discuss basics of chart parsing

When did Beethoven die

AVMs

‘dotted’ rules, e.g.

Q -> . When did [NP] . [V]
objects in context, e.g.

last date, last person ...

Passive chart Active chart Context chart

Fig. 2. Charts

here, but we will just briefly describe three charts used in our approach.2 The
passive chart is used to store finished edges. The active chart stores unfinished
edges, which are analogous to the dotted rules in the Earley’s parsing algorithm.
The context chart stores objects in context in form of unfinished edges. The
edges in the context chart are used for anaphoric resolution.

The result of parsing the question is an AVM that represents the question—
its syntax and semantics. For each passage relevant to that question, we apply
chart parsing on the whole passage. As a result, we obtain many edges within
the passage representing semantics (and syntax) of various parts of passages
(sub-sentence parts, sentences, and even some inter-sentence links). Finally, we
locate the answer by finding the AVM in the passage chart that is best-matched
to the question AVM. This is illustrated in figure 3.

Ideally, the matching procedure finds an AVM in the passage chart whose
semantic part unifies with the ‘WHERE’ part of the question AVM so that the
‘SELECT’ variable from question AVM becomes instantiated; and the answer is
found by tracing the ‘SELECT’ variable. However, this assumes perfect parsing
of the query and the passage, which is not a realistic assumption. To solve the
problem, we apply a unification matching procedure (similar to graded unifica-
tion [7]). The procedure unifies AVMs at the same feature names, and calculates
a matching score for features appearing in only one AVM.
2 Chart parsing is a well-known subject. [6] describes the approach used in Stefy.
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Who is the author of the book, "The Iron Lady: A Biography of Margaret Thatcher"?

Passage:
...89-0002 133444 November 12, 1989, Sunday, Home Edition Book Review; Page 1; Book Review Desk 1124 words MAGGIE THATCHER AS CROMWELL REDUX; THE IRON LADY: A BIOGRAPHY OF MARGARET THATCHER BY HUGO YOUNG (FARRAR, STRAUS &amp; GIROUX: $25; 570 PP.; 0-374-22651-2) By David Williams...

...

...

Query:

Fig. 3. Matching AVMs

The approach is not perfected enough to be presented in a formal and com-
plete form. We illustrate it on four examples from TREC-8, which were difficult
for the classical IR method, but handled with our approach.

Example 1. The question “When was London’s Docklands Light Railway con-
structed?” is represented as the following AVM:







SELECT: 1

WHERE:




EVENT: construct
OBJ: London’s. . . Railway
DATE: 1











A string containing the answer is “. . . the opening of the first 7 1/2 miles of the
railway in 1987.” and it is represented in this way:




HEAD: opening
OF: the first...railway
DATE: 1987





These two AVMs are matched using a lexical similarity measure between features
(‘HEAD’ and ‘EVENT’, and ‘OBJ’ and ‘OF’), atomic strings (keyword ‘railway’ and
similarity between ‘open’ and ‘construct’), and using the fact that ‘SELECT’ vari-
able is instantiated. We see how simple syntactic analysis improves performance.

Example 2. The question “How much could you rent a Volkswagen bug for in
1966?” is represented by









SELECT: 1

WHERE:







EVENT: rent
OBJ: a Volkswagen bug
FOR: 1

DATE: 1966















A relevant string is “. . . your could rent a Volkswagen bug for $1 a day.” which
produces the following AVM:




HEAD: rent
OBJ: a Volkswagen bug
FOR: $1 a day





which has a high matching score with the question AVM.
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Example 3. The question “In what year did Ireland elect its first woman presi-
dent?” is represented by:









SELECT: 1

WHERE:







EVENT: elect
SUBJ: Ireland
OBJ: its first woman president
DATE:

[
1

]















The following excerpts from a passage are relevant to answering the question:

December 3, 1990, . . . Ireland The nation’s first female president, Mary
Robinson, was inaugurated today. . .

Using the context chart, we resolve the reference ‘today’, unify it with the date
given at the beginning of the article (‘December 3, 1990’), and obtain the fol-
lowing representation:




EVENT: inaugurate
OBJ: The. . . first female president, Mary Robinson
DATE: December 3, 1990





This example illustrates the importance of anaphoric resolution.

Example 4. The question “When did Beethoven die?” is represented as







SELECT: 1

WHERE:




EVENT: die
SUBJ: Beethoven
DATE: 1











The relevant parts of the passage are:

If Beethoven felt. . . after finishing his monumental Ninth in early
1824. . . (he would die of jaundice and ascites on March 26, 1827), . . .

and the relevant AVM produced in the chart is:




EVENT: die
SUBJ: Beethoven
DATE: March 26, 1827





In this example, the resolution of the pronoun ‘he’ is important in solving the
problem.
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5 Conclusion and Future Work

In this paper, we present a novel approach to QA, based on a unification-based
grammar. Although some unification-based approaches to QA are successfully
implemented, we do not know of any previous use of unification-based NL gram-
mars. We argue that the semantic representation obtained from such grammars
is robust and easy to maintain.

The preliminary evaluation results show that the NL approach can signif-
icantly improve performance of a classical IR system. We have described our
unification-based approach, and presented four preliminary examples. These sim-
ple examples use very shallow AVMs, which is a simplifying limitation, but not
inherent to the approach. Currently, the matching procedure relies on manually
encoded lexical similarity function between features, and between atomic strings.
We expect that the use of WordNet will expand the coverage with a satisfiable
performance.

The system is not evaluated on a larger scale, but its large-scale performance
as a part of the MultiText QA system will be evaluated.
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Abstract. An extension to the Enhanced Genetic Algorithm (EGA)
analysis of Gary W. Grewal, Thomas C. Wilson, and Deborah A. Stacey
[1] is introduced and applied to the TSP. Previously the EGA had suc-
cessfully handled constraint-Satisfaction problems, such as graph col-
oring. This paper broadens the application of the EGA to the specific
NP-hard problem, the Traveling Salesman Problem (TSP). The first part
of this paper deals with the unique features of the EGA such as running
in an unsupervised mode, as applied to the TSP. In the second part,
we present and analyze results obtained by testing the EGA approach
on three TSP benchmarks while comparing the performance with other
approaches using genetic algorithms. Our results show that the EGA ap-
proach is novel and successful, and its general features make it easy to
integrate with other optimization techniques.

1 Introduction

This paper focuses on the enhancements that transform the traditional genetic
algorithm into an effective mechanism for solving the Traveling Salesman Prob-
lem (TSP), especially the symmetric TSP, in which given a set of n nodes (cities)
and distances for each pair (edge) of nodes, a roundtrip of minimal total length
visiting each node exactly once will be found [2]. The distance from node i to
node j is the same as from node j to node i. The path that the salesman takes
is called a tour. There are two alternatives concerned by the researchers in opti-
mization studies, especially with regard to the TSP: either to find near-Optimal
or global-Optimal tours, or how quickly and efficiently to do so.

In most of the variant GA approaches, heuristic approaches have been the
most important factors to be incorporated into the genetic algorithms used to
solve the TSP. Often, heuristics about problems are incorporated into algorithms
in the form of operators which iteratively perform local improvements to candi-
date solutions. Examples of such GA approaches focus on either employing highly
specialized and problem-Specific operators such as famous crossover operators,
including Order [3], PMX [4], Cycle [5], Edge Family [6], MPX [7], and Greedy
crossover [8], or combining classical or recent local optimization improvement
techniques such as 2-Opt, 3-Opt, hillclimbing, Lin-Kernighan, simulated anneal-
ing, etc. [7],[9],[10],[11],[12]. Although these GA approaches have presented sat-
isfied results on many TSPs, they all have some overhead problems; there exists
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an extremely time-Consuming process of fine-Tuning various parameters such as
crossover and mutation rates and the running of the GA is expensive since the
performance of these GA approaches largely relies on the employment of local
improvement techniques. Also, there has been some research published on the
effects of different selection strategies in this problem domain [15], [16]. Even so,
some of this research inevitably falls into the category of requiring a fair amount
of parameter fine-tuning. The EGA approach, however, concentrates on the GA
theory itself and transforms the traditional GA to work in an unsupervised man-
ner meanwhile maintaining high efficiency with low cost when applied to solving
the TSP.

2 EGA Approach for the TSP

The basic goal of the EGA approach is to provide a general mechanism to quickly
get close to a global optimum or reach the global optimum, which matches the
major concern of current various researches on optimization problems including
TSP. For the TSP problem, this paper shows that performance can be further
improved when the EGA is used in conjunction with the recombination crossover
operator on which most of the local improvement techniques have concentrated.
The EGA employs three major enhancements with respect to the traditional GA:
selection method, mutation method, and partial elitism policy. From Fig. 1, it
can be seen that appropriate operator rates need not be determined a priori;
crossover is always performed, while mutation is applied at appropriate times.
These enhancements enable the EGA to run unsupervised. Details of the whole
genetic search are introduced in the following sections.

2.1 Encoding

Permutation encoding is used, where each individual tour is simply the list of
cities in the order the salesman has traveled. For example, assuming there are 5
cities (1, 2, 3, 4, 5), if a salesman goes from city 2, through city 1, city 3, city
5, city 4 and returns back to city 2, the individual tour in a population will be
2 1 3 5 4. Such an encoding method can be used in ordering problems, such as
travelling salesman problem or the task ordering problem.

Each individual tour has a fitness value which is the sum of distances called
Euclidean distances between every pair of cities in the tour. That is for the N
cities TSP:

Fitness =
N∑

i=1

√
(xi − xi−1)2 + (yi − yi−1)2

where xi, yi are the coordinates of city i and xN , yN equal x0, y0.
In TSP, the smaller the fitness value is, the better the tour. The global

optimum tour is the tour with the smallest fitness value.
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1. Generate random population
and calculate fitness for each tour

Yes2. Find optimum or run-
Time reached

7. Mutation:
randomly
generate a
new tour and
substitute for
one of the
two
individuals

Done

3. Randomly select 2 parents that
have not been selected before

4. Crossover to produce 2 children

5. Select 2 fittest individuals
among 2 parents and 2 children

8. Put 2 individuals into the next
generation

10. New generation created

9. All parents have been
selected

6. Fitnesses of 2
individuals are the same

No

Yes

No

Yes

No

Fig. 1. Logical process of EGA approach
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2.2 Selection Method

There are many methods to select the best tours from a population to be parents
to produce offspring, e.g. Roulette Wheel selection, Boltzmann selection, tourna-
ment selection, rank selection, steady state selection. While these methods have
their unique and good features, they have some inevitable shortcomings. The
commonly used Roulette Wheel selection will have problems when the fitness
differs greatly within a population. For example, if the best tour fitness is 90%
of all the roulette wheel then the other tours will have very few chances to be
selected. In addition, with the relatively small populations typically used in GAs,
the actual number of offspring allocated to an individual is often far from its
expected value (an extremely unlikely series of spins of the roulette wheel could
even allocate all offspring to the worst individual tour in the population). And
it is well known that the rank selection method can lead to slower convergence
because the best individual tours do not differ so much from other ones and it is
quite computational expensive due to the amount of sorting which is necessary.

In the EGA approach, as our goal is to make our approach general enough
to extend to other applications, we consider that the selection method should
be simple, low cost, but efficient enough. Our selection method is to give every
individual tour an equal opportunity to participate in the crossover operation
exactly once by a random selection. For example, assuming there are a total of 6
tours (T1, T2, T3, T4, T5, T6) in a population, in other words, the population
size is 6:

– by random selection, T2 and T6 are chosen first for crossover and finish the
next steps after step 3 (refer to Fig. 1),

– T1 and T3 are then randomly selected and processed in the same manner
as T2 and T6 ,

– and finally the remaining tours T4 and T5 are selected and processed.

Since all tours, T1 to T6, have been selected and finished all required steps, all
the work for one generation is complete and thus a new generation is formed
according to Fig. 1.

By using this selection method, a good potential schema in a tour that might
unlikely be good at an earlier stage but could lead to a global optimum later
on might not be discarded too soon in early generations. Also, since every tour
has an opportunity to participate in the crossover operation, this maximally
preserves various edges information in the generation and thus helps the GA
work efficiently with a small population.

2.3 Crossover

Crossover is always performed in the EGA approach. Many effective crossover
operators, which have been employed by GA researchers and other local opti-
mization techniques for solving the TSP, can be plugged into the EGA approach.
These crossover operators focus on producing validate child tours without miss-
ing any single city and without repetition of any single city, ensuring that city
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adjacencies are maximally preserved from the parents to the children, employing
local improvement mechanism, or all of the above. The EGA approach does not
restrict what kind of crossover operator should be used.

In this paper, we use the fifty-fifty greedy crossover of Victor et al [13] to
demonstrate that performance is improved when solving three benchmark TSP
problems with the EGA approach compared to the results produced by Victor
et al. For further details about the comparison see Sect. 3. The following is an
example to explain how the fifty-fifty greedy crossover works.

– assume there exist 2 tours 1 2 3 4 5 (parent 1) and 3 1 2 4 5 (parent 2)
– to generate a child, find a random city in parent1, let’s say city 3 as the first

current city of child 1: 3 ? ? ? ?
– then we find the adjacent edges of city 3 in parent1: (3, 2) and (3,4) and

compare the distance of these two edges. If the distance of (3,4) is shorter,
we select city 4 as the next city of child1: 3 4 ? ? ?

– then we find the adjacent edges of current city 4 in parent2: (4,2) and (4,5)
and compare the distance of these two edges. If the distance of (4,2) is
shorter, we select city 2 as the next city of child1: 3 4 2 ? ?

– then we find the adjacent edges of current city 2 in parent1: (2,1) and (2,3)
and we select city 1 as the next city of child1: 3 4 2 1 ? since city 3 already
appears in child1

– we find the adjacent edges of current city 1 in parent2: (1,3) and (1,2). Since
both city 3 and city 2 already appear in child1, the closest city to city 1 from
the number of remaining unattended cities is selected. In this example, only
city 5 remains and so it is selected as the next city of child1: 3 4 2 1 5

– since all the cities are visited, child1 is formed. Other children can be created
in the same way

2.4 Mutation Method

To prevent too many similar individuals from being in the same generation
which leads to premature convergence and the danger of becoming stuck in a
local optimum, the mutation operator is usually used. But the question is when,
where and how it is used.

The EGA uses the mutation operator at appropriate times without determin-
ing a mutation rate in advance. As step 6 and step 7 in Fig. 1 illustrate, when
every two offspring are ready to be put into the next generation, which is ac-
tually the time when mutation operator is used, the EGA checks whether these
two individual tours have the same fitness value. If they do, a new randomly
generated tour will replace one of them and is injected into the next generation
with the other offspring. In this sense, a good tour never gets lost and meanwhile
high diversity is always maintained in each generation. This is very important in
the GA approach to the TSP and many other problems because high diversity
is the basic criteria for the optimization search to find the global optimum. In
addition, by introducing new edges (new pairs between two cities generated by
randomization) into the population, it is possible for the EGA to solve the TSP
using small populations.
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Even though the mutation operator is traditionally considered untrustworthy
and “dangerous”, it has an important role in the EGA approach and is executed
in an unsupervised manner at the appropriate time without losing any edge
information from parents to offspring.

2.5 Partial Elitism Policy

Premature convergence is one of the major difficulties with the GA and in fact
with most search algorithms. It is well known that this problem is also closely
tied to the problem of losing diversity in the population and it makes it hard
for the GA to find the global optimum. One source of this problem is that the
occasional appearance of a “super-Individual” takes over the population in a few
generations.

The partial elitism policy of the EGA is designed to avoid premature conver-
gence while taking advantage of the appearance of super-Individuals. It is related
to the whole selection procedure from step 3 to step 8 in Fig. 1. To emphasize
the difference between the EGA’s partial elitism and other elitist strategies used
in genetic algorithms, we illustrate the select procedure from step 3 to step 8
again in a simpler form in Fig. 2(b).

Crossover

Select
Two
Fittest
Tours

Select
Two
Fittest
Tours

Insert into
Next

Generation

Insert into
Next

Generation

Mutation

Crossover Mutation

P1

P2

P1

P2

P2

P2

P1

P1

C1

C1

O1

C2

C2 O2

(a)

(b) O1

O2

Fig. 2. (a) Elitism (b) Partial Elitism of EGA (C-Child, O-Offspring, P-Parent)

In Fig. 2(a), offspring are no longer guaranteed membership in the next gen-
eration, nor are parents forced to die after a single generation since mutation
mostly produces worse tours so that O1 and O2 are less likely to survive than
their parents P1 and P2. Therefore, it is easy to generate the premature conver-
gence problem.

In Fig. 2(b), the EGA limits the scope of the elitist strategy to the crossover
operator. The fitnesses of parents are compared with their children’s fitnesses
before mutation. Thus offspring O1 and O2 may include one of the parents and
one of their children, or both parents, or both children because crossover usually
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produces better individuals. EGA mutation is then applied to the two fittest
individuals O1 and O2 if they have the same fitness value. By postponing the
application of EGA mutation, diversity is reintroduced into the next population,
and the likelihood of premature convergence is reduced since the best individ-
ual is always maintained and propagated but never gets too much chance to
dominate the population.

3 Experimental Results

The following experiments examine the effectiveness of the unsupervised EGA
approach by applying it to three TSP benchmarks: Oliver (30 cities) [5], Eilon
(50 cities) [14] and Eilon (75 cities) [14], and comparing the performance of the
EGA approach to the performance produced by Victor et al who studied the
same TSP problems but employed several fine-Tuning and pre-specified genetic
operator rates (mutation rate = 0.3, elite number = 10) and the Roulette
Wheel selection method. Their application was only tested using the population
size of 20 (Details are contained in [13]).

All results are produced under the experimental environment illustrated in
Table 1. The entire experiment consists of two parts. In part 1, a summary of
experimental results for these three TSPs are contained in Table 2, in which
the population size is 20 and 100 runs are executed for each problem. In part
2, the experiment presents one of the EGA’s outstanding performances using
an extremely small population to solve Eilon’s 75-City TSP. The result of the
experiment of part 2 is illustrated in Table 3.

Table 1. Experimental environment

Machine Model Operating System Programming language Processor Memory
IBM Aptiva E2U Windows98 Java (JDK1.2) AMD-K6-2/333 48MB

3.1 Part 1

In Table 2, the average generation when the optimum was found is calculated
according to:

G = (
100∑

i=1

Gi)/100 (Gi = Generation when optimum was found in each run)

Diversity is measured for each run when the optimum is found:

Di = (Number of distinct individual tours)/(Population size)× 100%

so the resultant average diversity when the optimum was found in 100 runs is:
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Table 2. Summary of results of all experiments

Three TSPs Times Average Generation Average Diversity Average Running Time
Optimum When Optimum When Optimum When Optimum Found

Found Found Found (%) (Seconds)
(G) (D) (T )

30 cities 100 143 79 2
50 cities 100 2061 79 11
75 cities 100 1740 80 10

D = (
100∑

i=1

(Di)/100

Average running time when the optimum was found is calculated according to:

T = (
100∑

i=1

Ti)/100 (Ti = Running time of each run)

3.2 Part 2

The EGA approach was also tested on Eilon’s 75-City TSP with an extremely
small population size of 14. The EGA approach discovered the optimum in all 100
runs. Although the average generation when the optimum was found is greater,
there is no significant performance difference from the result produced when the
population size is 20 (refer to Table 3).

Table 3. Population size=20 versus population size=14 (Eilon’s 75-City TSP)

Population Times Average Generation Average Diversity Average Running Time
Size Optimum When Optimum When Optimum When Optimum Found

Found Found Found (%) (Seconds)
(G) (D) (T )

20 100 1740 80 10
14 100 2372 81 10

3.3 Advantages of the EGA Approach

As a result, the EGA approach outperforms in several ways:

1. High efficiency. As in solving these three TSPs, the EGA approach can always
reach the optimum without showing obvious difficulty. In the experiment of
Victor et al, there are still many local minima encountered. And only about
50% of the total runs can locate the optimum for Eilon’s 50-City and Eilon’s
75-City TSPs.
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2. High diversity maintenance ability. From the experimental results, it can be
seen that the population still maintains very high diversity even when the
optimum has been reached. The mechanism of the EGA helps genetic search
escape from local optima.

3. Good performance with extremely small populations.
4. No pre-specified parameters needed. The EGA approach runs in an unsu-

pervised way.

4 Conclusion

We have introduced an enhanced genetic algorithm for solving the Traveling
Salesman Problem. The enhanced combination mechanism of EGA selection
method, mutation method and partial elitism allows the genetic search to main-
tain a very high diversity, and to run efficiently with a very small populations
(14-20 individuals). The most important part of this EGA research is that not
only does it improve the performance of the genetic algorithm on TSP problems,
but it also enables it to run unsupervised without determining appropriate op-
erator rates a priori. In this sense, the EGA approach is more worthwhile than
other non-traditional GA approaches which focus on either fine-Tuning various
types of parameters in order to get better results but have to undergo extremely
expensive time-Consuming side-Effects, or borrowing some other computation-
ally expensive local improvement mechanism to enhance the GA search.

Thus, unlike most non-traditional GA approaches, our approach is general
and flexible and not limited to specific problem types. And its quick convergence
but with high diversity features make the EGA suitable to act as the foundation
to produce heuristic information for other optimization techniques. In future
studies, more work will be done to apply the EGA approach to other problems
in different domains and to categorize what kinds of problem are most suitable
for solution by the EGA.
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Abstract. This paper presents a new pruning method to determine a
nearly optimum multi-layer neural network structure. The aim of the
proposed method is to reduce the size of the network by freezing any
node that does not actively participate in the training process. A node
is not active if it has little or no effect to reduce the error of the network
as the training proceeds. Experimental results demonstrate a moderate
to nearly significant reduction in the network size and generalization
performance. A notable improvement in the network’s training time is
also observed.

1 Introduction

The concept of neural engineering is defined as the process of designing an op-
timum neural network structure with respect to the problem. The process is
also involves in the predetermination of some of the network’s parameters with
respect to the training data as well as the way to preprocess and present the
training data to the network.

In recent years, many neural networks algorithms have been proposed by re-
searchers to overcome the inefficiency of ANNs with predetermined architecture.
They all address ANNs with dynamic structures where the learning algorithms
not only search the weights space, but also modify the architecture of the net-
work during the training. In other words, the proposed algorithms are mainly
concerned with the issue of adapting the topology of a network as the training
progresses and determine an optimum topology to obtain a desired generaliza-
tion.

This paper presents a new pruning method. The proposed method, which
we call Bottom-Up Freezing (BUF), alters and ultimately optimizes the net-
work architecture as learning proceeds. The optimization process is carried out
by freezing any node that has the smallest effect at further reducing the error
of the network during the training process. The outline of the paper is as fol-
lows. In the next section the constructive neural networks learning algorithms
are summarized. The BUF pruning algorithm for multi-layer neural networks is
presented in Section 3. Subsequently, the experimental results are given. Finally,
the conclusions of the present study are summarized.
? Presently at Azad university, Tabriz, Tehran, Iran
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2 Constructive Learning Algorithm

In multi-layer feedforward neural networks, the learning process is very sensitive
to the size of the network. If the network is very large, the training of the
network may only force the network to memorize the input patterns. While large
size network may lead to over-generalization and poor performance, too small
a network size cannot generalize and is unable to solve the problem. Usually,
the structure of a network is decided in a trial-and-error manner. This approach
which requires various ad hoc rules of thumb is very time consuming and is
bound to failure.

Various researchers have investigated the alternative approaches to conven-
tional trial-and-error scheme and have proposed constructive learning algorithms
to automate the process of network design. Constructive algorithms are aimed at
finding an adequate sized network for a given problem. They fall into two main
categories. One involves the use of larger network architecture at the beginning
and pruning it down to near optimum size. Learning algorithms using this general
approach are called pruning. Examples include optimal brain damage[1], opti-
mal brain surgeon[2], interactive pruning[3], and skeletonization[4]. See[5] and[6,
chapter 13] for a good review of pruning algorithms. With the other approach,
the training begins with a minimal network and ends with a satisfactory network
size. The algorithms using this approach are referred to as growth or construc-
tive methods. Examples include the cascade-correlation leaning architecture[7],
upstart algorithm [8], and the tiling algorithm [9]. In multi-layer feedforward
neural networks, a minimal network does not have any hidden layer.

3 Bottom-Up Freezing Algorithm

Pruning methods start with a large network that is over-parameterized and elimi-
nate relatively unimportant nodes or connections. The pruning of selected nodes
and/or connections is carried out during the training process until a (nearly)
optimum network architecture is reached. The essential idea behind the weight
removal technique such as optimal brain damage is to analytically determine
the relative importance of weights in a multi-layer neural network using Taylor’s
series on the error function to second order in the weights. The optimal brain
surgeon technique is the generalization of weight perturbation technique to sets
of weights instead of individual weights (see [2] for details).

Another pruning approach involves the removal of (nearly) irrelevant nodes.
The basic idea underlying the BUF algorithm is to evaluate the hidden nodes
and isolate (freeze) those hidden nodes whose contribution to the convergence
of the network falls below a certain threshold. When a node is frozen, it will
not participate in the training process for a certain period of time or for a given
number of training examples. When the freezing period of a node is over, it is
returned to the network. The state of the node at the time of return will be the
same as its state at the time of freezing.

Initially, a frozen node stays out of the training process temporarily, which we
call local freezing. If a node freezes very often and the number of instances that a
node was frozen exceeds a certain limit, the node is permanently removed from
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the networkpruning. The pruning occurs when a node is found to be redundant
and ineffective to the progress of learning a problem.

Artificial neural networks as learning models do not have to use the same
structure from the beginning to the end of the training process. Using the
same topology throughout the learning process imposes crucial limitations on
the speed and convergence of the network. The local freezing part of the BUF
approach allows a network to change its underlying structure and adapt dynam-
ically to the ever-changing problem space as the training proceeds.

3.1 Local Freezing

Local freezing is the process of temporarily removing a node from the network.
The process involves identifying those nodes that barely contribute to the re-
duction of the criterion function of the network, E , measured over the entire
training set. We use the error signal of a node, e(t), measured over a single
training pattern presented to a node at time t as the main criteria to evaluate
the effectiveness of a node on the convergence of the network. The error signal of
node i in layer l is defined as el

i(t) =
∑

i (∆wij)2, where wij represents the out-
going weight of node i. Since the calculation of ∆w is embedded in the training
algorithm for multi-layer neural networks, our choice of using the above criterion
function in the freezing process will not impose any extra computation on the
training process.

Let ρ = λS represent an ρ − approximation, where S represent the size of
the training set and λ is set by the user. A node is a candidate for local freezing
if its error signal did not decrease in the last ρ consecutive presentations of the
training examples. The freezing time of a node (i.e., the number of presentations
that a node does not participate in the training process) is decided using the
distribution of the errors of ρ consecutive increases in the error signals. Moreover,
to be consistent with the behavior of gradient descent type algorithm, wherein
the size of steps is getting smaller as the optimum point is approached, the
magnitude of ρ − approximation at any point should be decided based on the
shape of the error surface as well as the position on the error surface relative to
the optimum point. The error rate (i.e., the rate of increase of error signal) of
node i in layer l at time t is defined as follows:

γl
i(t) =

(
e(t)

e(t − 1)
− 1

)

∗ 100.

The distribution of the errors of κ consecutive increases in the error signal of
node i in layer l is calculated by:

Dl
i =

ρ∑

t=1

γl
i(t) − E

[
γl

i

]

ρ ∗ E
[
γl

i

] ,

where E[.] represents the mean. The magnitude of Dl
i shows the degree of poor

behaviour of node i during the ρ consecutive presentations of the training exam-
ples. We use the magnitude of D as the freezing time, thus, a larger D means a
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longer freezing time. Freezing the insignificant nodes during the training process
will speed up the convergence of BUF as compared to the standard backpropa-
gation learning algorithm (see Section 4).

3.2 Relative Importance of a Node

The history of a hidden node (i.e., the number of times a node has been frozen, m)
is used to approximate the relative importance of that node to the convergence
of a network. The magnitude of m is a clear indication of the contribution of
a node to reducing the error E . The relative importance, R, of a given node is
defined as follows:

Rl
i =

{ 2+(m+1)
2+m if nodel

i is freezing now
2 + m otherwise

The relative importance of a node is a decreasing function based on the
magnitude of m. At the beginning of the training process it is set to the value
2. This initial setting will guarantee the decreasing nature of R. The value 2 is
calculated as follows:

mk+1

mk
< mk =⇒ mk + 1

mk
< mk =⇒ mk = 2.

where mk represents the consecutive number of times a node was frozen at the
time of presenting the kth training example. The relative importance of a set
of nodes is represented by the vector R.

As the training proceeds, the number of frozen nodes as well as the number of
times that a given node is frozen increases. Similarly, the variance of the values
in R, var [R], increases, whereas the mean of the values in R, E [R], decreases.
One of the key questions in the pruning algorithm is when is the proper time to
remove a node from the network architecture. In BUF, the basic idea underlying
the node removal is to analyze the freezing behaviour of a hidden node and
remove the node if it freezes very frequently (i.e., when the freezing frequency
becomes high). A node that freezes frequently is referred as node trashing.

3.3 Node Pruning

Let’s assume that during the training of a network a node is frozen a relatively
large number of times. If this node freezes one more time as the learning pro-
gresses, due to a small change in the magnitude of R (relative importance) of
this node, the variance and the mean of relative importance of all nodes, R of
the network do not change significantly. However, when we inspect the difference
between consecutive values of means, ∆µ, of relative importance of all nodes
and their variances, σ2

m, it is seen that the magnitude of the minimum value of
all ∆µs, min

[
∆µ

]
, decreases. ∆µ and σ2

m of node i in layer l are defined as
follows:
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∆µ = E
[Rl

i(t)
] − E

[Rl
i(t − 1)

]
.

σ2
m = var

[Rl
i(t)

] − var
[Rl

i(t − 1)
]
.

Thus, We can define the pruning time of a node as the time when the
min

[
∆µ

]
changes (reduces). However, this criteria is not suitable at the be-

ginning of the training process when freezing frequency of a node is not high
and a single freeze reduces the value of min

[
∆µ

]
. To solve this problem, in

addition to inspecting the value of min
[

∆µ
]

we also use the consecutive delta
variances, ∆σ2

m to determine a freezing candidate.
At the beginning of a training process, a single freezing of a node changes

the magnitude of its R by a relatively large factor. Therefore, the differences
between consecutive variances are high. However, as the learning progresses and
a node shows ill-behaviour and its m gets larger, further freezing of such a node
does not have any significant effect on its variance. In such a case, the delta
variance remains nearly constant. We consider a delta variance constant if the
variance of the last three σ2

ms is less than 0.5. It is now possible to fully define
the criteria to effectively prune a (nearly) irrelevant node. The training process
is temporarily halted and the least important nodes are removed if the value of
min

[
∆µ

]
is changed and var

[
last three σ2

m

]
< 0.5.

In each step of the Bottom-Up Freezing algorithm, only one node with the
highest trashing (i.e., largest m) is removed. After removing the least important
node, the parameters are reset to their initial values (eg, the relative importance
of nodes are set to 2).

Let n represent the number of nodes in a hidden layer. In a multi-hidden layer
network, the pruning is done on a layer basis. The node pruning procedure starts
with the first layer (bottom layer) and continues to remove the irrelevant nodes
for n consecutive node freezing until none of the nodes in this layer is qualified
to be removed from the network. The process then starts removing nodes from
the second hidden layer and continues on with the next (higher level) hidden
layer thereafter.

Generally speaking, a node in the lower hidden layers is considered to be
of less significance compared to a node in the higher hidden layers. This is due
to the fact that in the forward pass, the nodes in the lower hidden layers have
relatively smaller effect in the production of the final output than those of the
nodes in the higher hidden layers. Moreover, in the backward pass, the error
signals calculated for such nodes are considered less accurate than those of the
nodes in the higher hidden layers. Therefore, with less accuracy in their error
signals, these nodes do not have as positive effect on the calculation of the
weight updates and the networks convergence as the nodes in the higher hidden
layers have. The basic idea behind bottom-up pruning is to remove nodes and
possibly layers in the increasing order of their significance. Among all hidden
layers, least significant nodes of the network are in the first hidden layer. The
BUF algorithm identifies and removes as many unnecessary nodes as possible
from the first hidden layer before moving on to the next layer. Moreover, the
proposed pruning algorithm removes a relatively smaller number of nodes from
the higher hidden layers as compared to the number of nodes removed from the
lower hidden layers.
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4 Experimental Results

The bottom-up freezing algorithm presented in the previous section has been
tested on various artificial and real-world problems. The goal is to compare the
performance of the BUF algorithm with that of the standard backpropagation
algorithm. For each problem thirty trials were attempted, a few of which failed
to reach the solution criteria. The statistics on the network size, number of
pattern presentations, generalization and memorization rates include only those
trials that were successful and reached optimum. The simulation results of the
following problems are reported in this paper.

Sonar. The training and test sets each consists of 104 patterns. Each input
pattern is a set of 60 numbers in the range of 0.0 to 1.0.

Two-spirals. This classic dataset pertains to a two-input, two-class classifica-
tion problem. Each class contains data belonging to a separate spiral. The
training set consists of 194 patterns (each spiral has 97 points). There is
no test set for this problem to measure the generalization of the network,
instead, we have measured the memorization capability of the network.

Iris. This is a four-input, three-class classification problem. The training and
test sets each consists of 75 patterns.

Speech recognition. The training and test sets consists of 10 different words
spoken by 10 female and 10 male at four different times during the day for
a total of 20480 frames. The speech was sampled at 11025Hz.

Figure 1 compares the average network size, with and without pruning. Note
that in the case of ‘no pruning’ (i.e., the conventional backpropagation algo-
rithm), we have selected the architecture and network parameters that resulted
in good performance. We have applied the BUF algorithm to the best possible
network structure and it was able to further improve (in some cases substan-
tially) network’s structure, generalization and training time.

The experimental results for the above four problems are summarized in Ta-
ble 1. It shows the percentage of savings in the number of pattern presentations,
number of hidden nodes, and the degree of generalization. For the Spiral prob-
lem the degree of memorization is given. It is seen that the bottom-up freezing
method not only eliminates the unnecessary nodes and improves networks gen-
eralization/memorization, it also reduces the number of pattern presentations.

5 Conclusion

In this paper, we have proposed a new pruning algorithm called Bottom-Up
Freezing algorithm. The proposed algorithm consists of two main parts: (a)local
freezing and (b) node pruning. The local freezing part of the BUF algorithm
identifies and freezes those nodes that are unnecessary and (nearly) ineffective
to the progress of learning the problem. This allows a network to change its un-
derlying topology and continuously adapt itself to the problem space. The node
pruning part of the BUF algorithm uses the past behaviour (freezing history) of
a node to decide if a node is a good candidate to be removed from the network.
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Fig. 1. Comparing network size and generalization with and without pruning.

The node pruning starts from the bottom (first) hidden layer and continues on
with the next (higher) hidden layers.

In all the problems we have studied so far, the BUF algorithm has shown a
moderate to significant degree of reduction in the number of hidden layers and
improvement in the networks generalization/memorization. The computational
cost of four benchmark problems reported in this paper, Sonar, Spiral, Iris, and
Speech recognition problems are reduced by about 58%, 14%, 12%, and 12%,
respectively. These improvement are considered significant given the fact that
they are done on networks that have already been optimized using the trial-and-
error technique to the fullest possible extent.
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Table 1. Summary of the simulation studies.

Percentage of savings
Problems Presentations Hidden nodes Generalization Memorization
Sonar 57.5 87.5 3 —
Iris 13.8 37.5 3.3 —
Spiral 12.0 13.3 — 2.1
Speech 12.2 10.0 1.2 —
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Abstract. Thesauri have always been a useful resource for natural language
processing. WordNet, a kind of thesaurus, has proven invaluable in
computational linguistics. We present the various applications of Roget’s
Thesaurus in this field and discuss the advantages of its structure. We evaluate
the merits of the 1987 edition of Penguin’s Roget’s Thesaurus of English Words
and Phrases as an NLP resource: we design and implement an electronic lexical
knowledge base with its material. An extensive qualitative and quantitative
comparison of Roget’s and WordNet has been performed, and the ontologies as
well as the semantic relations of both thesauri contrasted. We discuss the design
in Java of the lexical knowledge base, and its potential applications. We also
propose a framework for measuring similarity between concepts and annotating
Roget’s semantic links with WordNet labels.

1   Introduction

WordNet [2, 14] is by far the most widely used electronic lexical semantic resource in
natural language processing (NLP). The Coling-ACL ’98 Workshop “Usage of
WordNet in Natural Language Processing Systems” [4] demonstrates that many
people adapt their research to this electronic database. Some 2000 citations to Miller’s
work [17] further substantiate the impact of WordNet on the computational linguistics
(CL) community. And yet, at first it was not much more than a machine tractable
thesaurus. Could a classical thesaurus, namely Roget’s Thesaurus, also be such an
invaluable resource if it were properly computerized?

We are not the first to wonder about the effectiveness of Roget’s Thesaurus for
NLP. Masterman [13] pioneered the use of Roget’s in CL when the field was in its
infancy. Many researchers have used Roget’s with mixed success, working with the
printed format or the electronic version of the 1911 edition [5]. Both of these
resources have proven ineffective for large-scale computational work: the printed
book for obvious reasons, the 1911 version for its dated vocabulary and methods of
representing the richness of the Thesaurus. Several better known experiments will be
discussed in this paper.

It is our opinion that Roget’s Thesaurus has great potential for NLP research. We
present the design and implementation of an electronic lexical knowledge base
(ELKB) using the 1987 edition of Penguin’s Roget’s Thesaurus of English Words and
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Phrases. We further discuss how the Thesaurus can be made machine-tractable in
Wilks’ sense of an electronic resource that is appropriate for further CL tasks [23].
Cassidy [1] as well as Sedelow and Sedelow [20] have attempted to formalize the
Thesaurus, but they did not manage to implement effective software. We show how
this can be done. We discuss the most challenging aspects: labeling implicit semantic
relations in a manner similar to that of WordNet, and building a framework for
calculating similarity between concepts. The availability of another ELKB can only
benefit our research community.

2   A Brief History of Thesauri in NLP

Dictionaries and thesauri have been used in NLP ever since the problem of language
understanding was first addressed. As Ide and Véronis [7] explain, machine-readable
dictionaries (MRDs) became a popular source of knowledge for language processing
during the 1980s. A primary research activity was to extract knowledge automatically
from MRDs to construct large knowledge bases, yet WordNet, the only available
resource of its kind, has been constructed by hand. We are now constructing an ELKB
automatically not from a dictionary, but from a thesaurus. An overview of research
done with Roget’s presents its potential and limitations.

2.1 Early NLP Experiments

Early NLP work relied on available lexical material. One resource was Roget’s
Thesaurus, used by Masterman [13] to improve word-for-word machine translation
(MT). Sparck Jones [21: 15] realized that the format of the Thesaurus must be
adapted for MT. She wrote that an ideal MT dictionary “… has to be a dictionary in
the ordinary sense: it must give definitions or descriptions of the meanings of words.
It must also, however, give some indication of the kinds of contexts in which the
words are used, that is, must be a ‘semantic classification’ as well as a dictionary”.
Roget’s is a classification system that can be the basis for such a MT resource.

Morris and Hirst [16] used Roget’s International Thesaurus for manual
construction of lexical chains, a measure of a text’s cohesiveness. Hirst and St-Onge
[6] continued this experiment by automatically computing lexical chains using
WordNet. Word sense disambiguation (WSD) might be the most popular use of
Roget’s in NLP, for example in the oft-quoted work of Yarowsky [25]. Other WSD
experiments using Roget’s Thesaurus are explained in [7].

2.2   Recent NLP Experiments

Many systems initially designed with Roget’s in mind, for example lexical chains or
WSD, were implemented using WordNet, perhaps only because WordNet is
computerized. It has also been used for text classification, information extraction, text
summarization and as the model for Euro WordNet [22]. And yet WordNet has
weaknesses that Roget’s Thesaurus does not have. For example, few links exist
between different parts of speech, and proper nouns are not represented.
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A current trend in NLP is to combine lexical resources to overcome their
individual weaknesses. Mandala et al. [12] try to enrich WordNet with both proper
nouns and relations between parts of speech from Roget’s. Kwong [10] aligns word
senses of a sample of the 1987 Penguin’s Roget’s with WordNet. Merely 30 nouns
were matched manually, but the experiment does suggest that WordNet and Roget’s
can be combined. The author states: “In general we cannot expect that a single
resource will be sufficient for any NLP applications. WordNet is no exception, but we
can nevertheless enhance its utility”. An electronic version of the Thesaurus will
allow for large-scale combining and enhancing of both resources.

3   A Comparison of Roget’s Thesaurus and WordNet

Roget’s Thesaurus can be described as a reverse dictionary. It is “… a collection of
the words it [the English language] contains and of the idiomatic combinations
peculiar to it, arranged, not in alphabetical order as they are in a Dictionary, but
according to the ideas which they express” [19]. This catalogue of semantically
similar words is divided into nouns, verbs, adjectives, adverbs and interjections. The
reader realizes implicit semantic relations between these groups. Here is an example
of the way in which the lexical material is presented in the Thesaurus:

Class one: Abstract relations
Section five: Number,  Category three: Indeterminate
Head: 102 Fraction: less than one
N. fraction, decimal fraction, 85 numerical element; fractional part, fragment 53
part, 783 portion; shred 33 small quantity.
Adj. fractional, partial 53 fragmentary, 33 small.

Miller et al. [15] similarly describe WordNet as lexical information organized by
word meanings, rather than word forms; nouns, verbs, adjectives and adverbs are
organized into sets of near synonyms, each representing a lexicalized concept.
Semantic relations serve as links between the sets. To contrast WordNet’s structure
with that of Roget’s, here is one sense of the noun fraction, represented in WordNet’s
hyponym tree:

abstraction
Þ  measure, quantity, amount, quantum

Þ  definite quantity
Þ  number

Þ  complex number, complex quantity, imaginary number
Þ  real number, real

Þ  rational number
Þ  fraction

In this section we compare both resources: words and phrases, ontologies and
semantic relations.
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3.1 The Counts of Words and Phrases

The simplest way to compare Roget’s Thesaurus and WordNet is to count strings.
Table 1 shows the word and phrase counts for the 1987 Penguin’s Roget’s Thesaurus,
divided among parts of speech. A sense is defined as the occurrence of a word or
phrase within a unique semicolon group (see Section 3.2), for example, {rising
ground, rise, bank, ben, brae, slope, climb, incline}. Table 2 presents the different
counts for WordNet 1.6 and the strings in common with Roget’s. Here a sense is the
occurrence of a string within a unique synset, for example, {slope, incline, side}.

Table 1. 1987 Roget’s Thesaurus statistics

POS Unique Strings Paragraphs Semicolon
Groups

Senses

Noun 56967 2824 30658 99799
Verb 24788 1486 13865 47399
Adjective 21982 1488 12807 42460
Adverb 4254 491 1803 5500
Interjection 375 60 65 405
Totals 108366 6349 59198 195563

Table 2. WordNet 1.6 statistics. Common refers to strings both in WordNet and Roget’s

POS Unique
Strings

Synsets Senses Common
with Roget’s

%

Noun 94474 66025 116317 25903 20.52
Verb 10319 12127 22066 7077 25.24
Adjective 20170 17915 29881 10197 31.46
Adverb 4546 3575 5677 1512 20.74
Interjection 0 0 0 0 0
Totals 121962 99642 173941 44689 24.07

The absolute sizes are similar. To calculate the overlap, we divide the number of
common strings C by the number of unique strings in both resources minus C.
Another way of viewing this would be to say that the common strings represent 41%
of Roget’s and 37% of WordNet’s unique words and phrases. The surprisingly low
24% overlap may be due to the fact that WordNet’s vocabulary dates to 1990, while
Roget’s contains a vocabulary that spans 150 years, since many words have been
added to the original 1852 edition, but few have been removed. It is also rich in
idioms: “The present Work is intended to supply, with respect to the English
language, a desideratum hitherto unsupplied in any language; namely a collection of
words it contains and of the idiomatic combinations peculiar to it …” [19]. Fellbaum
[3] admits that WordNet contains little figurative language. She explains that idioms
must appear in an ELKB if it is to serve NLP applications that deal with real texts
where idiomatic language is pervasive.
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3.2   The Ontologies

Roget’s ontology is headed by six Classes. Three cover the external world: Abstract
Relations deals with such ideas as number, order and time; Space is concerned with
movement, shapes and sizes; Matter covers the physical world and humankind’s
perception of it. The remaining Classes deal with the internal world of human: the
mind (Intellect), the will (Volition), the heart and soul (Emotion, Religion and
Morality). There is a logical progression from abstract concepts, through the material
universe, to mankind itself, culminating in what Roget saw as mankind’s highest
achievements: morality and religion [9]. Class Four, Intellect, is divided into
Formation of ideas and Communication of ideas, and Class Five, Volition, into
Individual volition and Social volition. In practice eight Classes head the Thesaurus.

A path in Roget’s ontology begins with a Class. It branches to one of the 39
Sections, further divided into categories and then into 990 Heads. A Head is divided
into paragraphs grouped by parts of speech: nouns, adjectives, verbs and adverbs,
although not all parts of speech can be found in every Head [9]. A paragraph is
divided into semicolon groups of semantically closely related words. These paths,
variously interconnected, create a graph in the Thesaurus. A path has always 7 edges:
Class, Section, Category, Head, POS, Paragraph, Semicolon Group, the word or
phrase. WordNet took a different approach to constructing an ontology. Only nouns
are clearly organized into a hierarchy. Adjectives, verbs and adverbs belong to
various webs, difficult to untangle. This pragmatic decision was not based on theories
of lexical semantics: “Partitioning the nouns has one important practical advantage: it
reduces the size of the files that lexicographers must work with and makes it possible
to assign the writing and editing of the different files to different people.” [14] The
noun hierarchies are organized around the following nine unique beginners:
{entity, something}, {psychological_feature}, {abstraction}, {state}, {event}, {act,
human_action, human_activity}, {group, grouping}, {possession}, {phenomenon}.

A simple quantitative comparison of the two ontologies is difficult. Roget finds
organizing words hierarchically useful: “In constructing the following system of
classification of the ideas which are expressible by language, my chief aim has been
to obtain the greatest amount of practical utility.” [19]. Miller, on the other hand, feels
that it is impossible to create a hierarchy for all words: “these abstract generic
concepts [which make up the top levels of the ontology] carry so little semantic
information; it is doubtful that people could agree on appropriate words to express
them.” [14]. The Tabular synopsis of categories, which represents the concept
hierarchy, appears at the beginning of Roget’s. In WordNet only the unique beginners
are listed, and only in the documentation. Much more value was placed on the
ontology in Roget’s. We note that WordNet’s ontology is entirely made up of synsets,
whereas Roget’s concept  hierarchy is situated above semicolon groups.

WordNet’s noun ontology is relatively shallow: it seems to have a limited number
of levels of specialization, though in theory there is no limit to the number of levels in
an inheritance system. Lexical inheritance, however, seldom covers more than 12
levels. Extreme examples usually contain technical distinctions not in the everyday
vocabulary. For example, a Shetland pony is a pony, a horse, an equid, an odd-toe
ungulate, a placental mammal, a mammal, a vertebrate, a chordate, an animal, an
organism, and an entity: 12 levels, half of them technical [14].
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3.3   The Semantic Relations

Roget’s has a rich set of implicit semantic relations that should be made explicit if the
ELKB is to be useful. Two types of explicit relationships are present at the word
level. Cross-reference is a link between Heads via the syntactic form of a word. For
example, the Heads 373 Female and 169 Parentage are linked by the Cross-reference
169 maternity. The word is present within the group { mother, grandmother 169
maternity } in the Head 373 Female and is the first word of a paragraph in the head
169 Parentage. See refers the reader to another paragraph within the same Head,
where the idea under consideration is dealt with more thoroughly. For example a
general paragraph such as killing in Head 362 Killing: destruction of life is followed
by more specific paragraphs homicide and slaughter. The See relationship appears
thus: { murder, assassination, bumping off (see homicide) }.

WordNet has 15 semantic relations [15, 2], the most important of which is
synonymy. We note that synonymy is the only relation between words. All others are
between synsets. For example, the synsets { car, auto, automobile, machine, motorcar
} and { accelerator, accelerator pedal, gas pedal, gas, throttle, gun } are linked by the
meronym (has part) relation, whereas the nouns car and auto are linked by synonymy.
WordNet stretches the concept of synonymy by placing immediate hypernyms in
synsets. Table 3 summarizes the semantic relations.

4   From a Machine Readable to a Machine Tractable Form

Our work is the first to transform the text files of the 1987 Penguin’s Roget’s
Thesaurus into a machine tractable form. Our goal is to maintain the information
available in the printed Thesaurus while also labeling implicit semantic relations and
calculating weights for paths between two semicolon groups. Going from machine
readable to machine tractable involves cleaning up and re-formatting the original
files, deciding what services the ELKB should offer and implementing them.

4.1   Preparation of the Lexical Material

The source of the 1987 Roget’s is divided into files with the text of the Thesaurus and
files with its index. The 200,000 word Text File and the 45,000 entries Index File,
both about 4 MB in size, are marked up using codes devised by Pearson Education.

Certain space-saving conventions are used. Where consecutive expressions use the
same word, repetitions may be avoided using “or”, as in “drop a brick or clanger”,
“countryman or –woman”. The repeated word may also be indicated by its first letter,
followed by a full stop: “weasel word, loan w., nonce w.,” [9]. In the Index, “ – ”
represents the first word of an entry, for example “narrow, – down, – the gap”. All
such abbreviations must be expanded before the lexical material is loaded into the
ELKB. A Perl script was written to do this as well as to replace the Pearson codes by
HTML-like tags, easier to process automatically. Other programs validated the
expansion errors mostly due to noise in the original material.
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Table 3. The semantic relations in WordNet

Semantic relation Comments Part of speech
( Cx stands for concept x ) N V Adj Adv

Synonym C1 means exactly or almost C2.  ·  ·  ·  ·
Antonym C1 is opposite in meaning to C2.  ·  ·  ·  ·
Hypernym C1 is a superordinate of C2.  ·  ·
Hyponym C1 is a subordinate of C2.  ·  ·
Substance meronym C1 is a substance of C2.  ·
Part meronym C1 is a part of C2.  ·
Member meronym C1 is a member of C2.  ·
Substance of holonym C1 has as substance C2.  ·
Part of holonym C1 has as part C2.  ·
Member of holonym C1 has as member C2.  ·
Cause to C1 is the cause of a result.  ·
Entailment C1 involves unavoidably a result.  ·
Troponym C1 is a particular way to do C2.  ·
Pertainym C1 relates to a noun.  ·  ·
Attribute C1 is the value of a noun.  ·
Value C1 has an adjective for a value.  ·

4.2   The Java Design of the ELKB

We have implemented in Java all functionality of the printed version of Roget’s. Our
system locates a semicolon group by looking its words up in the Index, or directly in
the Text via the classification system. Roget’s lattice of concepts will be used to
measure the semantic distance between two words and to access all semantically
related concepts; we discuss these extensions in Section 5.1.

Performance and memory use have been our main concerns. We have methods to
access a semicolon group in near constant time. The ELKB occupies 45 MB of RAM.
The Index is stored in a HashMap, Java’s implementation of a hashtable. A list of
references is stored for every entry. References point directly to one of the 990 Heads
from which the paragraph and semicolon group containing the word or phrase looked
up in the Index can be quickly found. The top part of the ontology (Classes, Sections,
Categories, Heads) is stored in a separate Ontology object. The material in the
Thesaurus can therefore be accessed via the Index, the Heads or the Ontology.The
ELKB is implemented as a library of Java methods, a program that can be used to
execute batch scripts and as a browser with a graphical user interface (GUI). A GUI is
being designed now. It will allow easy navigation through the web of related words
and phrases.
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4.3   Immediate Applications of the ELKB

Computerizing the Thesaurus allows us to study and analyze all its aspects. We do not
have to limit ourselves to small, labour-intensive experiments using the printed text.
The most immediate application of this electronic resource is to perform a mapping
between Roget’s and WordNet. This will help enrich both resources, although our
focus is on completing the ELKB. The mapping procedure is discussed in Section 5.2.
An ambitious project would be to reorganize the lexical information in WordNet by
classifying it using Roget’s ontology. We have not performed any experiments yet,
but, once the ELKB is complete, it could be used for many NLP applications. In fact,
there is no reason why programs using WordNet could not be adapted to use this
machine-tractable Roget’s, although we cannot speculate on the quality of the results.

5   Discussion and Future Work

Roget’s Thesaurus and WordNet are very different: a universal classification system
versus a network of synonym sets. Wilks [24] argues that both types of thesauri are
useful for NLP. Only proper computerization of Roget’s can prove its usefulness.
Once an ELKB has been constructed, a variety of NLP tasks will have to be
attempted. Test applications include word sense disambiguation using Yarowsky’s
algorithm [25] and automatic construction of lexical chains [16]. Having done the
original construction with a printed version of Roget’s, Morris and Hirst [16] write:
“Automation was not possible, for lack of a machine-readable copy of the thesaurus.
Given a copy, implementation would clearly be straightforward”.

Future work includes two major improvements, implementing a similarity measure
for concepts and labeling semantic relations, which will help unlock this treasure of
the English language.

5.1   A Similarity Measure for Concepts

Distance between concepts is central to many NLP applications. Those that use
WordNet may import synsets using all semantic relations, not caring about any
particular one. Problems arise because there is no subtle measure of semantic
proximity. The number of edges traversed proves not to be an effective measure,
because paths in WordNet are of varying lengths. For example, two senses of the noun
joint in WordNet are:

• Sense 1 : { joint, articulation, articulatio}
• Sense 6 : { joint, marijuana cigarette, reefer, stick }

The third hypernym of these two senses are respectively:
• Sense 1 : { entity, something }
• Sense 6 : { tobacco, baccy }

{ entity, something } is a unique beginner while { tobacco, baccy } is still six levels
away from the top of the hierarchy.

We propose a solution that uses Roget’s Thesaurus. All paths from Class to
Semicolon Group are of length 6, and the ontology is already known explicitly. It is
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therefore possible to create a table of weights for calculating the cost of a path.
Shorter paths via references will also be calculated. Edges for the same level of the
ontology will have a given cost, with penalties when Class, Section, Category, Head
or Paragraph boundaries are crossed. McHale [11] states that traditional edge
counting works surprisingly well with Roget’s taxonomy, with the results almost as
good as those of human judges. This leads us to believe that it will be possible to
come up with a precise measure for calculating the semantic similarity of semicolon
groups.

5.2   Explicit Semantic Relations

It is a common misconception that the Thesaurus is simply a book of synonyms. The
intention is to offer words that express every aspect of an idea, rather than to list
synonyms [9]. The groups of words found under a Head form a logical sequence.
Systematic semantic relations, such as IS-A and PART-OF, are not required between
the semicolon groups and the Head. For example, both restaurant and have brunch
are found under the same Head 301 Food: eating and drinking. Although native
English speakers easily identify such relations they are hard to discover automatically.
This is a challenge, since we do not know what criteria the lexicographers used to
form the groups.

WordNet and Roget’s have only a 24% overlap, but we hope to use WordNet to
label some relations in the Thesaurus. We must map as many semicolon groups as
possible onto synsets. Kwong [10] proposes an algorithm for aligning WordNet senses
with those of LDOCE [18] and Roget’s Thesaurus. We believe it to be possible to
align WordNet and Roget’s senses without having to use LDOCE. This alignment
algorithm is explained in Jarmasz and Szpakowicz [8].
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Abstract. This article presents a method for analyzing the evolution of concepts
represented by concept lattices in a time stamped database, showing how the
concepts that evolve with time induce a change in the concept lattice. The
purpose of this work is to extend formal concept analysis to handle temporal
properties and represent temporally evolving attributes.

1   Introduction

Formal concept analysis (FCA) [2, 7, 14] is a mathematical tool for analyzing data
and formally representing conceptual knowledge. FCA helps forming conceptual
structures from data. Such structures consist of units, which are formal abstractions of
concepts of human thought allowing meaningful and comprehensible interpretation.
FCA is a mathematical discipline whose features include:
- Visualizing inherent properties in data sets,
- Interactively exploring attributes of objects and their corresponding contexts, and
- Formally classifying systems based on relationships among objects and attributes

through the concept of mathematical lattices.
FCA automatically generates hierarchies called concept lattices that characterize the
relationships among objects and their attributes.

Concepts change and evolve with time. In fact, change seems to be constant in a
continuously changing world. In many domains such as science, medicine, finance,
population, and weather patterns, change is noticeable from one time to another. The
extension of concepts (set of objects) and their intensions (set of related attributes)
may change, affecting how the entities are related. As a consequence, the concept
lattice characterizing the relationships among a set of entities (objects and attributes)
evolves over time. Temporal concept lattice metamorphosis is the change in the
concept lattice over time.

The rest of this section introduces some basic FCA definitions, terminology and
states some assumptions. Section 2 presents temporal lattices and the evolution of
concept structures in these lattices. Section 3 identifies the importance and
applications of this work. In Section 4, the extension of FCA is developed and
techniques for identifying temporal evolution patterns are presented. Section 5
discusses the problem of inferring temporal properties.



336         R. Neouchi, A.Y. Tawfik, and R.A. Frost

1.1   Terminology

Definition 1. A formal (or dyadic) context • = < G, M, I > is a triple consisting of two
sets G and M and a relation I (also called dyadic relation) between G and M. The
elements of G and M are called the formal objects and the formal attributes
respectively. The relationship is written as gIm or (g, m) ³ I and is read as ‘the formal
object g has the formal attribute m’. A formal context can be represented by a cross
table that has a row for each formal object g, a column for each formal attribute m and
a cross in the row of g and the column of m if gIm.

Definition 2. Let < G, M, I > be a context. The set of all formal attributes of a set A ²
G of formal objects is denoted by A’ and defined by: A’ = {m ³ M | gIm for all g ³
A}. Similarly, the set of all formal objects of a set B ² M of formal attributes is
denoted by B’ and defined by: B’ = {g ³ G | gIm for all m ³ B}. Note that if A = {«}
then A’ = A. Similarly, if B = {«} then B’ = B.

Definition 3.  A formal (or dyadic) concept c of the context < G, M, I > is the pair (A,
B) with A ² G, B ² M, A’ = B and B’ = A. A is called the extent (denoted by Ext(c))
and B is called the intent (denoted by Int(c)) of the formal concept c := (A, B).

Definition 4. Let c1 := (A1, B1) and c2 := (A2, B2) be two concepts of a formal context
< G, M, I >. The formal concept c1 is a formal subconcept of the formal concept c2 if
Ext(c1) ² Ext(c2) (or A1 ² A2), which is equivalent to Int(c2) ² Int(c1) (or B2 ² B1), and
we write c1 � c2 (or (A1, B1) � (A2, B2)). In this case c2 is a formal superconcept of c1, and
we write c2 � c1 (or (A2, B2) � (A1, B1)). It follows from this definition that a formal
concept c1 is formal subconcept of the formal concept c2 if c1 has fewer formal objects
and more formal attributes than c2. Similarly, a formal concept c1 is formal
superconcept of the formal concept c2 if c1 has more formal objects and fewer formal
attributes than c2.

Definition 5. The set of all formal concepts of the formal context < G, M, I > is
denoted by ß(G, M, I). The relation 

� is a mathematical order relation called the
hierarchical order (or simply order) of the formal concepts. It is also called formal
conceptual ordering on ß(G, M, I). A concept lattice of the formal context < G, M, I >
is the set of all formal concepts of < G, M, I > ordered in this way and is denoted by
ß(G, M, I).

Definition 6. An ordered set (or partially ordered set) is a pair (M, �), with � being a
set and � an order relation on M.

1.2   Assumptions

In extending FCA over time, we prefer to index an object with a time variable, e.g.
Objti, rather than having time itself as an attribute for that object. The conventions we
assume are as follows:
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- Objti represents object Obj at time ti, where t is the time variable and i is an integer,
and read as ’Object Obj at time t i’

- ti precedes tj if i< j for any two integers i and j
- Given all the time intervals ti³n, where i is an integer and n is the number of

observations made on a particular object over time, they form a partial order

To define the hidden evolution patterns that the concepts exhibit in a time stamped
database, we assume the following:
- The database is fairly complete; that is, there is no missing stage in the evolution

patterns for all individual objects.
- We start with the patterns that have more stages. Then we fit individual objects that

do not show the complete evolution stages to these patterns using temporal
matching [13].

- As we do not have a reliable way to distinguish among stages that could be missed
and stages that have happened in reality but are missing in the dataset for some
object, we assume here the latter. This assumption may be unreasonable in some
domain and we propose treating such cases as defaults in nonmonotonic reasoning
that should be retracted to resolve conflicts. Such conflicts may occur if persistence
or causation properties are violated. As this may involve a complex knowledge
engineering tasks, the knowledge engineer should critically examine the validity of
this assumption.

2   Temporal Lattices

To handle the evolution phenomenon of concept structures and analyze temporal
metamorphosis, a temporal extension of FCA is developed. This temporal extension
involves the study of persistence, and other temporal properties implied by the data
and concept lattices.

As an example, consider the simple database in Table 1, where some attributes
change over time (juvenile, adult, senior) while others persist (dead). It can be easily
seen from the concept lattice how the concepts manifest a change over different times
(figure 1). Note that in our notation, t represents the time variable and ti precedes tj if
i< j for any two integers i and j. In addition, ti and tj form partial order.

To represent temporal evolutions in a concept lattice, we use two types of edges:
temporal edges and non-temporal edges. The temporal edges allow the evolution of a
particular object to be followed over time. A temporal precedence relation “<” is
defined over time points. The direction of the arrow indicates this precedence. Non-
temporal edges are undirected, as they are not governed by the temporal precedence.
In fact, non-temporal edges describe a concept at a particular point in time.

The temporal concept lattice in Figure 1 shows that there are transient attribute and
persistent ones.  For example, juvenile is a transient attribute as a juvenile becomes an
adult but dead is a persistent attribute.
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Table 1. Human context database

Objects/Attributes Juvenile Adult Senior Dead Male Female

Adamt1 X X
Adamt2 X X
Stevet1 X X
Stevet2 X X
Nancyt1 X X
Nancyt2 X X
Maryt1 X X
Maryt2 X X

Fig. 1. Human context concept lattice

3   Importance and Applications

Understanding concept evolutions can be useful in many applications including data
mining, planning, and decision support systems. The application that motivated this
work in particular is identifying the evolution of a set of concepts and related
vocabulary for speech recognition in the Speech Web [6] as a conversation evolves.
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In discovering useful patterns from a database researchers are increasingly relying
on data visualization to complement data mining in the knowledge discovery process.
Visualization helps developing insights and deduces the hidden regularities in the
data. Animation seems to provide proper visualization for temporal evolution.
However such animations can be easily generated from the proposed lattices.
Moreover, the concept hierarchies provide a new tool for the study of the
relationships between an interval and its subintervals.

FCA has been applied to static domains such as assessing the modular structure of
legacy code [11] in software engineering, text analysis from different sources [4] in
information retrieval, designing and exploring conceptual hierarchies of conceptual
information systems [12] in knowledge acquisition, transforming object class
hierarchies into normalized forms [10] in databases, performing structure-activity
relationships [1] in environmental/chemical applications, structuring the design
interface of some educational applications [5], analyzing individual preference
judgments [9] in decision making tasks, implementing the TOSCANA system [8] in
natural-language, improving the accuracy of speech recognizers [15] in speech
recognition, and using medical-discharge summaries as training data sets [3] in
medicine.

Adding further notations to FCA’s representation is important to extend it over
time. The suggested extension opens up new areas of applications to FCA such as
representing the course of infection for a disease, the life cycle of a software project,
the evolution of social, economic, and population trends.

4   Classification of Temporal Patterns

4.1   Unconditional Evolution Patterns

Unconditional patterns are any kind of a change in the attributes of an object over
time that always happens in one unique direction. For example, during the process of
getting older in humans, a person always evolves from being a child to an adult and
then to a senior.

4.2   Conditional Evolution Patterns

Conditional patterns are any kind of change in the attributes of an object over time
that might happen in more than one direction depending on a certain condition that
controls the order of the changing attributes. For example, depending on the external
temperature, a piece of ice might evolve from being solid to liquid or vice versa. Note
that both conditional and unconditional patterns are forms of evolution and that some
unconditional patterns become conditional once the data set has enough information
about causes and effects.
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4.3   Persistence

Persistence is a state in which an object maintains its attributes throughout its lifetime
without any change in these attributes. For example, once a person is born male, he
will always remain male. We say that gender is a persistent property.

4.4   Transitions

As opposed to persistence, transitions are any kind of change in the attributes of an
object over time that does not follow any specific direction. For example, a person
might eat then sleep, or sleep then eat. In this case, we say that eating and sleeping are
transient properties. Note that transitions do not constitute evolution patterns for our
purpose here.

5   Inferring Temporal Properties

Let B be the set of formal attributes, and bj be the attribute number j, where i and j are
integers.

Definition 7. The intension of an object Obj at time ti is the set of all attributes of that
particular object at time ti. It is written as:

i{Objti} = {bj ³ B} . (1)

Definition 8. An evolution of an object, Ev(Obj), is an ordered set of sets containing
all the intensions that this particular object from an arbitrary initial time t0 to a certain
time ti. The intension of the object at time ti+1 is added to the resulting evolution set
when we consider the evolution up to time ti+1:

" t<ti, i{Objti} ³ Evt0-ti(Obj) . (2)

For example, according to Table 1 above, we describe the evolution of Adam to be:

Ev(Adam) = {{male, juvenile}, {male, adult}} . (3)

Definition 9. The evolution interval (the subscript of the evolution) of an object, Evt0-

ti(Obj), specifies an interval from time t0 to time ti, where t0 is the time at which the
observation of the object started and ti is the time at which the observation ended. In
other words, the evolution depends on the interval we allow for the object to change.
For example, according to Table 1, we describe the evolution of Adam at time t1 to be:

Evt0-t1(Adam) = {{male, juvenile}} . (4)
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Definition 10. An evolution pattern of an object, EvPat(Obj), is an ordered set
containing the elements of the conditional or unconditional patterns that this particular
object might exhibit throughout its lifetime. For example, according to Table 1, we
describe the evolution pattern of Adam to be:

EvPat(Adam) = {juvenile, adult} . (5)

One way to determine the evolution pattern is to examine the intensions of a
particular object over different points in time. For example, suppose that the intension
of Ann includes at time t1 the child attribute, at time t2 the adult attribute, and at time t3

the senior attribute, such that t1< t2< t3 and < is a precedence relation that defines a
partial order. That is

i{Annt1} ® {child} .

i{Annt2} ® {adult} .

i{Annt3} ® {senior} .

(6)

Then an evolution pattern from child to adult to senior exists. Usually we are
interested in evolution patterns that are consistent for all the objects or for a class of
objects. For example, the pattern of evolution from child to adult to senior is
applicable to any object x of type person in the database. This evolution is written as:

" person(x ³ G), $ EvPat(x) = {child, adult, senior} . (7)

To determine if such a pattern holds, we form a temporal matching problem [13].
Temporal matching can be formulated as a special constraint satisfaction problem that
tries to find a consistent assignment of states such as child, adult, and senior to
individuals whose state is only known at particular points in time. This assignment
has to be consistent with temporal constraints representing the persistence properties
of each state.

Definition 11. A persistent property of an object, Persist(Obj), is a set containing all
that object’s attributes that persisted in all of the intension sets of that object over
time, including its evolution set if that object happened to have an evolution. For
example, according to Table 1, we describe the persistent property of Adam to be:

Persist(Adam) = {male} . (8)

To determine the persistent property, we examine the intensions of a particular
object over different points in time. For example, if the intension of John includes at
times t1, t2 and t3 the male attribute then male is a persistent property of John in
particular and to all objects x of type person in the database, such that x has the male
property:

i{Johnt1} ® {male} .

i{Johnt2} ® {male} .

i{Johnt3} ® {male} .

(9)
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"t (person(x ³ G) ¾ male(x)), i{x} ® {male} . (10)

Similarly, the female property is persistent to all objects y of type person in the
database, such that y has the female property:

" t(person(x ³ G) ¾ female(x)), i{x} ® {female} . (11)

Definition 12. A transient property of an object, Transient(Obj), is a set containing all
that object’s attributes that exhibited a change in all of the intension sets of that object
over time, including its evolution set if that object happened to have an evolution. For
example, according to Table 1, we describe the transient property of Adam to be:

Transient(Adam) = {juvenile, adult} . (12)

Note that a change that happens in any order is not considered to be an evolution
pattern. For example, suppose that the intension of Bob includes at time t1 the eating
attribute, at time t2 the sleeping attribute while the intension of Sam includes at time t1

the sleeping attribute, at time t2 the eating attribute. That is:

i{Bobt1} ® {eating} .

i{Bobt2} ® {sleeping} .

i{Samt1} ® {sleeping} .

i{Samt2} ® {eating} .

(13)

Then no evolution pattern from eating to sleeping, or from sleeping to eating
exists, and that this rule is applicable to any object x of type person in the database.

" person(x ³ G), !$ EvPat(x) = {eating, sleeping} .

" person(x ³ G), !$ EvPat(x) = {sleeping, eating} .

(14)

Note also that the transient property set of an object is not always identical to its
evolution pattern set. For example in the case we just mentioned about Bob and Sam,
the evolution pattern set of both Bob and Sam would be empty, while it is not the case
for the transient property set of either one:

EvPat(Bob) = {«} .

                                      EvPat(Sam) = {«} .

Transient(Bob) = {eating, sleeping} .

                        Transient(Sam) = {sleeping, eating} .

(15)

Note that the temporal matching exercise detects such transients as failure to
match.
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6   Conclusion

In artificial intelligence, there is a great need to represent temporal knowledge and to
reason about models that capture change over time. Since changing the time variable
causes a change in the intension (attributes) of concepts, we end up having different
concept lattices representing the same context at different times, which we call a
temporal concept lattice metamorphosis. Finding the order of the changing attributes
therefore defines the evolution itself in the concept lattice.
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Overview of Planned Thesis

The aim of my PhD. is to investigate the use of adaptive representation meth-
ods in reinforcement learning (RL). Reinforcement learning algorithms attempt
to learn a policy which maximises a reward signal. In turn, this policy is di-
rectly derived from long-term return estimates of state-action pairs (Q-values).
However, in environments with real-valued or high-dimensional state-spaces, it
is impossible to enumerate the value of every state-action pair. This necessitates
the use of function approximation in order to infer state-action values from sim-
ilar states. However, traditional systems of this kind are typically bound to the
parameters and resources with which they are initially provided. If the chosen
representation is too fine then learning proceeds to slowly to be practical, while
representations which are too coarse may result in poor policies. Furthermore,
even if adequate uniformly detailed representations can be decided upon, these
typically provide more detail than is necessary in most of the state-space. Again,
this can have severe negative effects on the rate of learning in some tasks.

The thesis will discuss several methods to manage this tradeoff by adap-
tively and non-uniformly increasing the resolution of the Q-function based upon
a variety of different criteria and within a variety of RL setting (model-based,
model-learning and model-free). In addition to this, it will examine the interac-
tion between Q-function and policy representations and the RL algorithms used
to generate them.

Recursive Partitioning

One method to improve the Q-function representation is to begin learning with a
coarse, discrete representation and recursively sub-divide it in areas of interest.
Because the initial representation is coarse, Q-value estimates can quickly be
generated for most of the state-space and useful initial policies can be generated.

We note that in most RL problems, representing an optimal policy is eas-
ier than representing the optimal Q-function, and in many continuous state
problems an optimal policy representation may consist of just a few boundaries
separating the space into areas of the same optimal action(s).

For example, consider the mountain-car task shown in Figure 1. The learner
has the task of driving a car to the top of a steep hill in the shortest time
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Goal

Gravity

Vel., v

Position, x

accelerate

decelerate

Fig. 1. (left) The mountain-car task. (right) An optimal policy for this task can be
represented by dividing the space into 2 partitions.

possible by applying either an acceleration or deceleration to the car. The car
is under-powered and must first reverse to gain enough momentum to propel it
to the goal. An optimal solution to this problem may be found by dividing the
state-space into just two partitions; one where the car should accelerate and one
where it should decelerate.

We exploit this with the decision boundary partitioning algorithm [5] which
refines the Q-function representation by subdividing the state-space at bound-
aries where the currently recommended actions differ. In the areas between the
boundaries, the optimal action(s) are easy to choose and remain coarsely rep-
resented (see Figure 2). The algorithm also partitions the space less finely at
decision boundaries where the estimated gain for being able to accurately choose
the best action is small.

Experiments have shown that the final policies achieved can be better and
are reached more quickly than with fixed uniform representations. This is es-
pecially true in problems requiring fine control in a relatively small part of the
entire state-space. In addition, compared to traditional function approximation
techniques, relatively little prior knowledge is required about the configuration
of the function approximator.

The partitioning of the state-space is achieved with a kd-tree. The root node
of the tree represents a hyper-rectangle covering the entire space, each branch of
the tree divides the space into two smaller subspaces along a single dimension and
the leaves of the tree store the actual data. However, this method is currently
only suitable for use in low dimensional state-spaces (as are most grid based
approximation methods) since even a single division along each dimension causes
an exponential growth in the number of grid cells. Future work will examine ways
to adapt this approach to use sparse instance-based function approximation.

Related Work

A number of other researches have also employed kd-trees to recursively partition
state-spaces for reinforcement learning. Munos and Moore [3] have independently
developed the same heuristic of refining the Q-function around areas of policy
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Refinement

Fig. 2. (left) An initial coarse representation of the mountain-car state-space. (right)
The representation after refinement. The highest resolutions areas are found along
decision boundaries where there is the greatest loss for taking an incorrect action.

difference. A key difference is that their method requires a model of the environ-
ment to be provided in advance. As such, it is a method for planning and cannot,
at present, be used for learning on-line with experience, but has been found to
successfully find near optimal policies for complex 6 dimensional problems.

In an earlier paper, the Parti-Game algorithm [2] and a later version of it
[1], kd-trees were also employed for adapting resolution. Although the method
has been shown to work in problems of up to 9 dimensions, it is limited by its
applicability: the goal must be known in advance, general reinforcement functions
may not be used, local controllers need to be provided and the state-transitions
must be deterministic.

Another independent model-free approach to this problem has also recently
been proposed. kd-Q-Learning [9] starts with a kd-tree that is fully partitioned
to a given resolution. Q-values are kept and maintained at all levels of the tree.
The method improves upon other multi-resolution methods, such as the CMAC
[7], as it can select Q-values from different resolutions; it chooses the level whose
Q-value it is most confident of. In addition, maintaining Q-values at several
levels in less wasteful of experience than the method presented here. However,
it is important to note that although the method reduces learning cost it still
suffers from the kind of state explosion experienced by fixed resolution methods.
As such, the method is restricted to problems where it is possible to keep the
fully partitioned tree from the outset.

Learning with Adaptive Representations

Almost all RL algorithms rely upon the Markov property to maintain their guar-
antees of convergence. Where this property is violated, as it typically is when
function approximation is used, the effects of naively applying the learning algo-
rithms can be unpredictable. This is particularly true of 1-step RL algorithms,
such as Q-learning [10] and dynamic programming [8], which make heavy use
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of the Q-values already stored in the function approximator. There are exist-
ing methods to tackle this (such as eligibility trace methods [4,8]) but these
are known to behave poorly in situations where continuous exploration is nec-
essary. Continuous exploration is needed in many different RL settings (e.g.
non-stationary environments and multi-agent learning), including learning with
adaptive representations since the effects of taking actions in new higher resolu-
tion states needs to be learned. The thesis work will present novel “off-policy”
RL algorithms that allow for continuous exploration and are also expected to
work well in non-Markov environments. These are also expected have the same
convergence-to-optimal guarantees as Q-learning in Markov environments.

Also, we note that in a variable resolution system, the time between the ob-
served states depends upon the local density of the Q-function representation.
The thesis work has provided methods which exploit this to make improvements
to a general class of RL algorithms that work better in non-Markov environ-
ments. These employ temporal abstraction [6] at a granularity defined by the
local density of the representation in order to reduce the problems associated
with losing the Markov property. The result is a reinforcement learning system
which employs both spatial abstraction (through function approximation) and
temporal abstraction (through the learning algorithm) simultaneously.
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1   Introduction

Engineering information modeling involves database systems and modeling tools.
Currently, there are no existing database systems and modeling tools that support
imprecise and uncertain engineering information. Information imprecision and uncer-
tainty exist in almost all aspects of engineering applications. Constructing intelligent
manufacturing systems (IMS) has imposed great challenge to current database tech-
nologies in modeling engineering data with imprecise and uncertain information.

Information modeling in databases should be implemented at two levels, i.e. con-
ceptual data modeling and logical database modeling. In our research, imprecise and
uncertain engineering information is identified and represented by null values, partial
values (including interval values), fuzzy values, and probabilistic values. A particular
emphasis is on fuzzy data. Several major logical database models are first extended
for fuzzy information, including relational databases, nested relational databases, and
object-oriented databases. In addition, two flexible relational database models for
fuzzy and probabilistic information are developed, respectively. Conceptual data mod-
els such as ER/EER and IFO are then extended for modeling fuzzy information. The
formal methodologies are developed for mapping the extended conceptual data models
to the extended database models. At last, two information-modeling tools for engi-
neering applications: IDEF1X and EXPRESS are fuzzily extended, and the issues on
database implementation of fuzzy EXPRESS information models are discussed.

2   Logical Database Models with Incomplete Information

The measure of semantic relationship of imprecise and uncertain information is crucial
for their representation and processing in relational databases. In relational databases
with null values and partial values, only qualitative measures of "definite" and
"maybe" were addressed. These measures are little informative. In fuzzy relational
databases, there have been some methods introduced to quantitatively assess the se-
mantic relationship of fuzzy data. However, there are counterintuitive results while
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applying these methods. So new methodologies of quantitatively measuring the se-
mantic relationships of partial values and fuzzy data are introduced in our research. On
the basis, imprecise functional dependencies, fuzzy functional dependencies, fuzzy
data redundancy removals, and fuzzy relational operations are defined. Here, func-
tional dependencies can be viewed as one kind of knowledge to be used in approxi-
mate reasoning, and relational operations are the means by which query processing
can be implemented.

Although fuzzy information and probabilistic information have been introduced
into relational databases, they were studied separately. There is no proposal to provide
a flexible relational database model that incorporates them simultaneously. In our
research, we introduce two kinds of relational databases with hybrid imprecise and
uncertain information, i.e., fuzzy attribute-based probabilistic and fuzzy measure-
based probabilistic relational databases. The relational operations for the relational
databases with hybrid imprecise and uncertain information are developed.

In order to model complex objects for real applications with fuzzy information, we
introduce possibility-based fuzzy nested relational databases and develop fuzzy nested
relational operations in our research. In addition, little work has been done on fuzzy
information modeling in object-oriented databases and their focuses were on fuzzy
objects and fuzzy classes. In our research, based on possibility distribution and the
semantic measure method of fuzzy data developed, we further investigate fuzzy object
relationships and fuzzy inheritances. A generic model for fuzzy object-oriented data-
bases is hereby developed.

3   Fuzzy Conceptual Data Models

Three levels of fuzziness have been introduced into the ER model. Based on fuzzy set
theory, the fuzzy extensions of several major EER concepts such as super-
class/subclass, generalization/specialization, category, and the subclass with multiple
superclasses were introduced. Being one kind of diagrammatic data model, however,
the graphical representations of the fuzzy EER have not been developed. In our re-
search, we develop a set of notations to support three levels of fuzziness modeling in a
fuzzy EER model.

IFO data model was extended into a formal object model IFO2 for object-oriented
database modeling and design. The extensions of IFO and IFO2 to model imprecise
and uncertain information in object databases were proposed. Their extension mainly
focused on the attribute values of the objects and the objects themselves in the object-
based data model. However, the fuzzy extensions of some basic notions in IFO such as
fragments and ISA relationships are still unclear. Based on fuzzy set theory, a fuzzy
extension to IFO data model at the three levels of fuzziness like the fuzzy ER model,
denoted by IF2O, is developed in our research. In addition, the methods of mapping the
fuzzy EER model to the FOODBs and mapping the IF2O model to the fuzzy relational
databases are not available in the literature. So, in our research, we develop the formal
methods to implement such mappings. It should be particularly emphasized that we
extend the IDEF1X data model to describe fuzzy information.
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4   Extending EXPRESS for Modeling Fuzzy Information

Product data models can be viewed as a class of semantic models that take into ac-
count the needs of engineering data. Some attentions have been paid to modeling in-
formation imprecision and uncertainty in semantic data models. However, no attention
has been pain for extending EXPRESS, a crucial tool for modeling engineering infor-
mation.

With the current edition of EXPRESS, null values are permitted in array data types
and role names by utilizing the keyword Optional. The application of three-valued
logic (False, Unknown, and True) is just a result of the null value occurrences. In
addition, the select data types define named collections of other types. An attribute or
variable could therefore be one of several possible types. In this context, a select data
type also defines one kind of imprecise and uncertain data type whose actual type is
unknown to us at present. However, further investigations on the issues of the seman-
tics, representation and manipulation of imprecise and uncertain information in EX-
PRESS are needed.

In our research, we fully extend the EXPRESS language based on fuzzy set and
fuzzy logic, including basic elements, various data types, EXPRESS declarations,
calculation and operations, and EXPRESS-G. Utilizing the extended EXPRESS, the
information model with incomplete information as well as crisp information can be
constructed. The extended EXPRESS fully covers the current edition of EXPRESS. In
other words, the current edition of EXPRESS should be a proper subset of the ex-
tended EXPRESS. When the information has no imprecision and uncertainty, the
extended EXPRESS can be reduced the current edition of EXPRESS.

5   Database Implementation of Fuzzy EXPRESS Model

The EXPRESS data modeling language is used to describe a product data model with
activities covering the whole product life cycle. Based on such a product data model,
product data can be exchanged and shared among different applications. This is the
goal of the STEP standard. Generally speaking, the application of STEP is mainly
concerned with two aspects. One of the aspects is the establishment of the product
information model to represent product data according to information requirements in
application environment and the integrated resources in STEP. The other one is the
manipulation and management of product data in the product information model. All
these are related to the implementation of STEP in database systems.

Utilizing different database models, some mapping operations have been developed
in the literature to map EXPRESS to databases. These database models include tradi-
tional databases such as network, hierarchical, and (nested) relational databases. Since
EXPRESS is semantically richer than traditional database models, the mappings of
EXPRESS to object-oriented database model have been investigated. A general
mechanism for identifying information loss between data models has been shown in
literature. In terms of functions, users define their databases using EXPRESS, ma-
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nipulate the databases using SDAI, and exchange data with other applications through
the database systems. SDAI can thus be viewed as a data access interface. The re-
quirements of SDAI functions are determined by the requirements of the application
users. However the SDAI itself is in a state of evolution. This is an indication of the
enormity of the task, the difficulty for achieving an agreement as to what functions are
to be included, and the viability of implementing the suggestions. Some basic re-
quirements that are needed for manipulating the EXPRESS information model, such
as data query, data update, structure query, and validation, have been investigated and
their implementation algorithms have been developed.

The formal methods for mapping fuzzy EXPRESS information models to fuzzy
nested relational databases and to fuzzy object-oriented databases are developed in
our research. According to the feature of incomplete information models, the require-
ments of SDAI functions are then investigated to manipulate the EXPRESS-defined
data in the databases. Depending on different database platforms, the implementation
algorithms of these SDAI functions are respectively developed. In addition, the strate-
gies of querying incomplete relational databases are further studied to provide users
with power means by which the useful information can be obtained from product
model databases with imprecise and uncertain information.

6   Conclusion

Based on the research developed, one could use the following procedure for con-
structing intelligent engineering information models with imprecision and uncertainty.
First, imprecise and uncertain engineering information can be described using EX-
PRESS-G, ER/EER, or IFO to form a conceptual data model. According to this con-
ceptual data model that may contain imprecise and uncertain information, an EX-
PRESS information model with imprecise and uncertain information can be created.
Finally, the EXPRESS information model can be mapped into a database information
model based on relational databases, nested relational databases, or object-oriented
databases. The manipulations of information model in databases are performed via
SDAI operations as well as DBMS. It can be seen that with the modeling methodolo-
gies developed in our research and the Application Protocols, the imprecise and un-
certain engineering information model can be shared and exchanged between different
applications.
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Abstract. The focus of this paper is on enhancing the incremental learning of
case-based reasoning (CBR) systems.  CBR systems can accept new cases and
therefore learn as they are being used.  If some new attributes are to be added to
the available classes, however, the similarity calculations are disturbed and
some knowledge engineering tasks should be done to let the system learn the
new situation.  The attempt here is to make this process automatic and design a
CBR system that can accept adding new attributes while it is in use.  We start
with incremental learning and explain why we need continuous validation of the
performance for such dynamic systems.  The way weights are defined to
accommodate incremental learning and how they are refined and verified is
explained.  The scheduling algorithm that controls the shift from short-term
memory to long-term memory is also discussed in detail.

1   Introduction and Motivation

Hybrid case-based reasoning (CBR) systems have many advantages that make them
appealing for some machine learning tasks.  Flexibility and the ability to learn and
enhance the performance of the system over time (incremental learning) are among
them.  Although CBR is incremental in that new cases can be added to the system,
almost nothing has been done in enhancing this capability.  In order to let CBR
systems stay in use, we often need to make the system accept new attributes for the
available classes.  For instance, in medical diagnosis, new tests are often introduced to
the market that make the diagnosis process more accurate or cheaper; in e-business,
everyday manufacturers introduce products with new features.  CBR systems that
help diagnostic tasks or e-business services can easily become obsolete if they cannot
accept new attributes while being used.  However, the idea of adding new attributes
has not been addressed in the research community.  Our approach tries to design and
implement an incremental CBR solution for such a dynamic environment in the
application area of medical diagnosis.

2   Incremental Learning

A CBR system uses the past experiences from the case library to achieve a solution
for the query case.  This is done by calculating similarity measures, often using
attribute weights, between the query case and the candidate cases in the case library.
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Machine learning literature, defines incremental (continuous or dynamic) learning, as
opposed to one-shot learning, with two characteristics:

1. Learning never finishes.  This introduces overfitting problem and the need for a
stopping criterion in most machine learning approaches.  In CBR, new cases are
added to the system after verification and they can be used for future consultations.
However, the new cases should have the same number of attributes and fall into one
of the pre-specified classes to be understood and classified by the system.  We try to
expand this limit by letting the system accept new attributes while being used.

2. No complete use of all past examples is allowed which brings up the
stability/plasticity dilemma [3].  In conventional CBR systems, once attribute weights
are assigned, there will be no learning process other than adding the new verified
cases to the case library.  However, when we accept new attributes for available
classes, the weight assignment process should be done at least for the new
combination of attributes.  The challenge is how to calculate the new weights so that
the system can adopt the changes, keep its stability with respect to the old attributes,
and stay in use in a dynamic environment without the help of a knowledge engineer.

Since the system is supposed to be used dynamically, no matter how good the applied
algorithms are, the weights estimated by the system must be validated continuously.
Otherwise the system may go wrong and cause potential damages.  Therefore, we
believe that incremental learning should be characterized by three characteristics.  In
addition to the above two, the third one is indeed a self-validation and online warning
scheme to inform the user if the system cannot reach a decision within the acceptable
range of validity metrics (accuracy, precision, sensitivity, and specificity).  In the
following, our approach to these three issues is explained.

3   Learning New Weights Dynamically

Decomposition method (local and overall similarities, calculated by the use of
attribute weights) is the most widely used technique for similarity calculations.  We
use the same technique but to solve the incrementality problem, we define weights as
follows.

wi = wi(ai, Aj) (1)

Where an attribute weight wi is considered to be a function of not only its attribute ai

but also the attribute-group Aj it belongs to.  This approach can also help in counting
the synergic effects among the attributes.  A case is also defined as: Case = (time-tag,
a1…an, Aj, pi) in the case library, where time-tag is the case ID, a1…an are attributes,
and pi is the performance index for the self-validation process.

For each attribute group Aj the domain expert gives his preferred weights as an
accepted range.  The average of this range serves as a starting point in estimating
weights.  A performance learner does learning the values of weights in the system.
When a new Aj is introduced, typically the number of related cases is small.  Thus a
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leave-one-out resampling technique is used for the first time weights are estimated
and the corresponding validation.  This is done in a batch mode and as the number of
cases increases for that Aj, k-fold and finally a simple partitioning method can be
used for modification and validation of weights.

Weight correction (in the batch process) is done only when a misclassification occurs.
This prevents the system, to some extent, from overfitting problem but can cause a
slow convergence of weights.  Since we start with the values recommended by the
domain expert, the speed of convergence is not critical.  The value of change in
weights can be determined by taking derivative of the similarity function if it happens
to be a smooth function.  Otherwise, simpler methods can be used.

4   Batch Validation Scheduling

When to start the batch process for an attribute group is determined by batch
validation scheduling algorithm.  The idea is basically how to shift the learned
weights from short-term to long-term memory and also in opposite direction if the
performance of weights is not satisfactory.  Fig. 1 shows the general concept of short-
term to long-term memory.  In short-term memory ideas are more subject to change
and show less resistance (R); while in long-term memory the resistance to change is
greater and we need much more evidence to change the idea.  The purpose of
scheduling is to make the system able to differentiate between newly accepted
weights and the ones that there have been many cases supporting them.  We like the
system to be careful and suspicious about the former (sooner batch validation) and
feel more relax about the latter (longer periods between two batch validations).

In other words, we try to define a spectrum that begins with the first assigned weights,
by the domain expert, (short-term memory) where limited number of cases support
the weights and finally ends at long-term memory where many verified cases support
the weights.  The algorithm that controls this process applies a Fibonacci series to the
number of stored cases and also considers the performance of the system since the last
validation process.  We start the Fibonacci series by F0 = 0 and the next point is when
F1 = some statistically sound number for the number of cases to be validated for their
weights (say 30).  In other words, any number in the original Fibonacci series is
multiplied by this number (30).  The rest of the series follows as usual.

R Number of
stored cases

Resistance to
change

Fig. 1.  Short-term and long-term memory
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Fi = Fi – 1 + Fi – 2  for  i ‡  2 (2)

The result of each validation determines stay, move forward, or move backward in
Fibonacci position (i.e. when to do the next validation).  By “when” here we mean the
number of stored cases for an attribute group since the last batch validation.  If the
performance is satisfactory, it steps forward in the Fibonacci series meaning that more
cases are stored before initiating the batch process.  If the performance is not
satisfactory, however, it decides either to step backward or stay in the same position
in the series.  This process helps the system to react faster when there are valuable
things to be learned and, on the other hand, do not keep busy when nothing new is to
be learned.  It also helps in forgetting what has been learned inappropriately.  The
algorithm for the batch validation scheduling is as follows.

P := acceptable performance (say 85%); given by domain expert
p := performance of this period of batch process; based on

reliability metrics
D p := the change in p;  between the last and current periods
e  > 0;   significance margin for performance (say 5%) given by domain expert
if  p ‡  P  then  move forward;   (F = Fi + 1);
if (p < P & – e  ‡  D p) then move backward; (F = Fi – 1)  i.e. D p is

worse
if (p < P & |D p| < e ) then stay; (F = Fi)  i.e. D p is acceptable but not p

5   Self-Validation Scheme

The role of the batch validation process is to analyze the reliability of the refined
weights that are calculated at the end of each period.  In addition to the above
mentioned batch validation, there is an online warning system that evaluates the
performance of the system as every case is added to it.  A performance index, pi, is
saved for each case after its verification and it can take one of the four possible values
(TP, TN, FP, FN).  Calculation of accumulators for pi’s is done online for each Aj.
Using these accumulators, validation metrics, namely accuracy, precision, sensitivity,
and specificity, are calculated online and if they are below the threshold (assigned by
the user), a warning is issued.
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Abstract. Our research proposes and demonstrates with a prototype
system an automated aid for animators in presenting their ideas and in-
tentions using the large range of techniques available in cinematography.
An experienced animator can use techniques far more expressive than the
simple presentation of spatial arrangements. They can use effects and id-
ioms such as framing, pacing, colour selection, lighting, cuts, pans and
zooms to express their ideas. In different contexts, a combination of tech-
niques can create an enhanced effect or lead to conflicting effects. Thus
there is a rich environment for automated reasoning and planning about
cinematographic knowledge. Our system employs a knowledge base of
cinematographic techniques such as lighting, colour choice, framing, and
pacing to enhance the expressive power of an animation.
The prototype system does not create animations, but assists in their
generation. It is intended to enhance the expressiveness of a possibly
inexperienced animator when working in this medium.

1 Related Work

Some computer graphics systems have incorporated cinematographic principles.
He et al. [3] apply rules of cinematography to generate camera angles and shot
transitions in 3D communication situations. Their real-time camera controller
uses an hierarchical finite state machine to represent the cinematographic rules.
Ridsdale and Calvert [8] have used AI techniques to design animations of in-
teracting characters from scripts and relational constraints. Karp and Feiner [4,
5] approach the problem of organizing a film as a top-down planning problem.
Their method concentrates on the structure and sequencing of film segments.
Perlin and Goldberg [7] have used AI techniques to develop tools to author the
behaviour of interactive virtual actors. Sack and Davis [9] use a GPS model to
build image sequences of pre-existing cuts based on cinematographic idioms.

Butz [2] has implemented a tool with similar goals to our own for the purposes
of generating animations that explain the function of mechanical devices. The
system uses visual effects to convey a communicative goal. The animation scripts
are incrementally generated in real time and are presented immediately to the
user.
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2 RST Plan Representation

The transformation from animator intent into presentation actions requires some
type of structured methodology to allow implementation. For this purpose we are
employing Rhetorical Structure Theory (RST) [6]. Though RST was envisioned
as a tool for the analysis of text, it also functions in a generative role. Its focus
on communicative goals is useful for modelling the intentions of the author, and
how these intentions control the presentation of the text. This technique is used
by Andre and Rist to design illustrated documents [1].

In our work the author is replaced by an animator and the text is replaced
with images. The communicative acts are not comprised of sentences, but are
assembled from the structure and presentation of the scene.

3 Design Approach

We are using a traditional AI approach: acquire and represent the knowledge,
then build a reasoning system. The source of our knowledge is a traditional
cinematography textbook [10]. The knowledge in this book is general in nature
but has a simple rule-based approach. There are three major components to the
reasoning system: the knowledge base, the planner, and the renderer.

Knowledge Base. The knowledge base is our attempt to capture the “common
sense” of cinematography. Some important concepts represented in the knowl-
edge base are: cameras, camera positions, field of view, lights, colours, scenes,
stage positions, solid objects, spatial relationships, 3D vectors, occlusion, moods,
themes and colour/light effects.

Figure 1 shows an example of some of the knowledge presented in our cine-
matography reference text in several chapters on scene lighting. In this figure we
have broken down the techniques described into their major classifications ar-
ranging them from left to right according to the visual “energy” they convey. The
terms written below each lighting method are the thematic or emotional effects
that are associated with these techniques. It is these effects that the animator
can select when constructing a scene with our program.

In addition to lighting techniques, the knowledge base represents camera
effects like framing, zooms, and wide-angle or narrow-angle lenses. Colour selec-
tions for objects and backgrounds as well as their thematic meanings are also
contained in the knowledge base. These three major techniques (lighting, colour,
and framing) can be used to present a wide variety of effects to the viewer.

We have used a qualitative reasoning approach to representation in our
knowledge base. For instance, a size instance is categorized as one-of tiny,
small, medium-size, large, and very-large while stage positions consist of
locations like stage-right or stage-left-rear.

The knowledge base is written in LOOM, a Classification/Subsumption based
language written in LISP. LOOM represents knowledge using Concepts and Re-
lations which are arranged in a classification hierarchy. LOOM’s power lies in
its ability to classify concepts into the classification hierarchy automatically.
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Fig. 1. Semantic Deconstruction of Cinematography Lighting Models

Planner. The planner constructs RST plans which contain cinematographic
instructions for presenting animation scenes. The planner is a depth-first forward
chainer that actively analyzes the effects of the RST plan steps. While the RST
plan is being constructed, the planner searches through the space of all possible
RST plans implied by the predefined RST plan steps. The partial RST plan at
any point is the “state” of the planner as it searches through possible plans.

As the planner proceeds, a description of the animation shot is created. A
Shot concept contains relations (in frame terminology, slots) for characters, light-
sets, colour-choices, camera positions, etc. The specifics of a particular Shot are
created through a series of constraints and assertions to the knowledge base.
This specific Shot is an “instance” of the the Shot “concept”. If at any point a
Shot instance is found to be inconsistent (for example, it is constrained as both
brightly lit and dark at the same time) then this branch fails and the planner
backtracks to try another approach.

If a plan succeeds, the resulting shot is presented to the animator. At this
point, the animator can evaluate the scene using his or her own criteria and can
choose to accept or reject the result. If the animator rejects a shot, the planner
is told that the current solution is a failure. The planner then back-tracks to the
most recent choice point, and continues to search for another solution.

Renderer. After the planner has found an RST plan for a shot, it can be
rendered. The Shot instance for the plan contains all information needed to
render the scene visually. For this task we use the Persistence of Vision ray-
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tracer (POV-ray). A ray-tracer is needed to correctly render the complex lighting
effects that can be generated by the RST planner. Alternatively, the shot can
be rendered to VRML (Virtual Reality Modelling Language) and viewed with
an appropriate tool.

4 Current Status and Future Work

The present implementation accepts input statements about animator intentions
and scene structure and produces ray-traced images of the scene with appropriate
lighting, colour choice, and framing applied. In the future we will concentrate
on assembling short scenes from several distinct shots.
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Abstract. This paper demonstrates the use of recursive modelling of
opponent agents in an adversarial environment. In many adversarial
environments, agents need to model their opponents and other
environmental objects to predict their actions in order to outperform
them. In this work, we use Deterministic Finite Automata (DFA) for
modelling agents. We also assume that all the actions performed by
agents are regular. Every agent assumes that other agents use the same
model as its own but without recursion. The objective of this work is
to investigate if recursive modelling allows an agent to outperform its
opponents that are using similar models.

1. Introduction

Agents in any environment have a difficult task in modelling the world and their own
place in it. Multi-agent environments, particularly with adversarial agents, have the
additional problem of the world state being changed by another autonomous entity. In
fact, it is the goal of adversarial agents to make it difficult for your agent to succeed.
Opponent modelling is a process by which an agent attempts to determine an
adversary’s most likely actions based on previous observations of that opponent. This
can be extended recursively by trying to determine what your opponent thinks of you.
We will test this“Recursive Modelling” (you watching me, watching you, watching
me...) in a 3-D game environment to determine the optimal depth of this recursion.

2. Environment

We have developed a 3-D “Quake-like” engine to test recursive modelling of
autonomous “Quake-Bots” or in our case “Maze-Bots”.This environment is ideal for
this testing for a number of reasons. 3-D games offer a very rich, dynamic
environment in which simulations can be run. The environment can be very easily
extended so that the agents compete with and learn from human players with the exact
same knowledge, limitations and abilities. Our environment consisted of a maze-like
arena with a variety of randomly placed walls for hiding and strategy. The goal of
each Maze-Bot was to search for and shoot its opponent, while minimizing the
number of times that it was shot. A match ended when one of the agents was shot,
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causing the defeated agent to be ‘spawned’ to a new random location and a new
match  begun. Performance was determined by the number of matches won.

To allow for more interesting strategies, each agent had imperfect knowledge of
the world state according to the following guidelines: Agents had perfect knowledge
of their own position/state in the world; Agents were only be able to “see” objects in
front of them with a 60 degree filed of view; Agents could “feel” when they bumped
into an object, or if an agent bumped in to them; Bullets travelled at 10 times the
speed of an agent; Agents could not fire a second shot until the first bullet hit an
object. Each agent had an unlimited number of bullets in its gun.

3. Agent Model

In this work, we used Deterministic Finite State (DFS) machines to model each agent.
The DFS machine used for each player was pre-defined and each agent had
knowledge of the other agent’s model.  In fact, both players used similar models with
minor differences.  The basic machine used for the first player monitored the state of
the world and actions of the other player. Since game theory states that two players
are in constant interaction, the output of this model was the action to be taken by the
agent at that moment.  Planning only occurred (implicitly) in the selection of discrete
actions.  The modelling component added knowledge of the opponent to this decision
in an attempt to produce a more successful action.  The second player used the same
model, differing only in the level of recursion used to predict its opponents next
move.   To avoid an infinite recursive loop, each agent assumed that the other was not
modelling recursively.

In this environment, each agent was in one of two different states: Search state (the
default state) occurred whenever an agent was unable to determine the actions of its
opponent (player B is not in player A sensors’ range). In this state, all the actions of
the agent were decided based on the information gathered from  the environment.  As
soon as any sensor provided information about the opponent, the agent entered Fight
state. There was also an insignificant End state entered at the end of each match.

The prediction function used in the fight state was at the very heart of the recursive
modelling.  Unfortunately, it was only possible to estimate (with a fairly high degree
of accuracy) where the opponent would be.  The algorithm assumed a triangle with
vertices being the Agent's current position (A), the opponent's current position (B)
and the Opponent's anticipated future position. Substituting the known distance (Dist),
the known angle (i) along with the ratio of agent movement to bullet
movement(x,5x) to the law of cosines we get:

(5X)2 = X2  + D2 - 2XDcos(i) or     (1)

24X2 + 2XDcos(i) - D2 = 0     (2)
since X is the only unknown in this polynomial we can solve using the quadratic
formula.
X = (-b+/-sqrt(b2 - 4ac))/2a   (3)

Unfortunately this added some uncertainty to our solution since the result of the
square root can be positive or negative. In experiment 1, rotations clockwise used the
positive result and counterclockwise used the negative. Although this prediction
worked for most cases, it was not perfect. Prediction errors occurred when the
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opponent changes state after the shot was fired, as well as the occasional error from
the prediction function itself.  For experiment 2, The prediction calculation was fine-
tuned; All variables were converted from floating point to double precision, and the
estimate of the known angle (B) was improved.  After these enhancements, solving
for the polynomial was consistently accurate using the positive square root value.
The only remaining source of error was from an opponent changing state after the
shot was fired.

4. Results and Discussion
Performance of the agents were analysed based on the level of recursive modelling
used. Matches were arranged for analysis using a Latin Square design (Each recursive
level played all of the others in a best out of 15 round robin) up to a maximum
recursion of 4 (R0-3).  These results were subjected to a 1-within (recursive level) by
1-between (experiment) repeated Analysis of Variance (ANOVA) and are displayed
in figure 2.  There was a main significant effect of Recursive level (F(3,30) = 29.0, P
< .0001) and a marginal interaction between recursive level and experiment (F(3,30)
= 2.7, P < .07).

In both experiments, the recursive
agents (R1-3) outperformed the non-
recursive agent (R0) in every match.
The major difference between
experiments, was the optimal level of
recursion.  In experiment 1, R1 agents
outperformed all other agents.  That
they outperformed the non-recursive
agent was no surprise, but the fact that
they did better than agents with deeper
recursion was unexpected. One
explanation for this result lies in the
errors embedded in the prediction
function.

Fig. 1. The effect of recursive level (R0-4) on
agent performance for both levels of prediction
accuracy (Moderate and High).

  Prediction of an opponent’s location
  was prone to errors in rounding, use of
  the quadratic formula as well as future
  changes to the opponents state.

It is likely that the decrease in performance was due to these errors compounding as
the recursive level increased. Evidence for this theory can be seen in experiment 2,
where the prediction function was modified to eliminate rounding and mathematical
errors.  The only remaining errors would be generated by future changes in state by
the opponent agent.  In this experiment, the R2 agents have the optimal performance
and it is not until R3 that performance drop is noted.

5. Conclusion

Opponent modelling and recursive modelling have been shown to improve
performance of agents in a dynamic ‘quake-like’ environment.  The degree of
improvement for recursive modelling, however, seems directly linked to the accuracy
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of the model that agent uses.  If there are any errors or assumptions in the model of
the opponent, performance will degrade increasingly with the level of recursion used.
Errors in prediction compound the more often they are used and the optimal level of
recursion depends, at least in part, on the accuracy with which an opponent is
modelled.
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Hernádvölgyi, István T. 194
Holte, Robert C. 57
Huang, Xiangji 1

Japkowicz, Nathalie 67
Jarmasz, Mario 325

Kennedy, Kevin 357
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